![2021-2022学年度强化训练冀教版七年级数学下册第十章一元一次不等式和一元一次不等式组专题训练试题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12766734/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练冀教版七年级数学下册第十章一元一次不等式和一元一次不等式组专题训练试题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12766734/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练冀教版七年级数学下册第十章一元一次不等式和一元一次不等式组专题训练试题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12766734/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试复习练习题
展开
这是一份数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试复习练习题,共18页。试卷主要包含了下列说法中错误的是,若,则不等式组的解集是,现有甲等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在数轴上表示某不等式组的解集,如图所示,则这个不等式组可能是( )A. B. C. D.2、已知a>b,下列变形一定正确的是( )A.3a<3b B.4+a>4﹣b C.ac2>bc2 D.3+2a>3+2b3、某市最高气温是33℃,最低气温是24℃,则该市气温t(℃)的变化范围是( )A.t>33 B.t≤24 C.24<t<33 D.24≤t≤334、若m>n,则下列不等式不成立的是( )A.m+4>n+4 B.﹣4m<﹣4n C. D.m﹣4<n﹣45、下列说法中错误的是( )A.若,则 B.若,则C.若,则 D.若,则6、若,则不等式组的解集是( )A. B. C. D.无解7、若不等式(m-2)x>n的解集为x>1,则m,n满足的条件是( ).A.m=n-2且m>2 B.m=n-2且m<2C.n=m-2且m>2 D.n=m-2且m<28、关于x的一元一次不等式的解集在数轴上表示为( )A. B.C. D.9、现有甲、乙两种运输车将46吨物资运往A地.甲种运输车载重5吨,乙种运输车载重4吨,每种车都不能超载.已安排甲种车5辆,要一次性完成该物资的运输,则至少安排乙种车( )辆.A.5 B.6 C.7 D.810、已知关于x、y的二元一次方程组的解满足,且关于s的不等式组恰好有4个整数解,那么所有符合条件的整数a的个数为( )A.4个 B.3个 C.2个 D.1个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、解一元一次不等式的一般步骤:(1)______:各项都乘以分母的最小公倍数;(2)______:注意符号问题;(3)______:移动的项要变号;(4)______ :系数相加减,字母及字母的指数不变; (5) ______ :不等式两边同时除以未知数的系数.2、 “x与2的差不大于3”用不等式表示为___.3、已知关于,的方程组,其中,给出下列命题:①当时,,的值互为相反数;②是方程组的解;③当时,方程组的解也是方程的解;④若,则.其中正确命题的序号是 __.(把所有正确命题的序号都填上)4、若x>y,用“>”或“<”填空:1-x_________1-y5、不等式的解集的表示方法主要有两种:一是用______(如x>2),即用最简单形式的不等式x>a或x<a(a为常数)表示;另一种是用______,标出数轴上的某一区间,其中的点对应的数值都是不等式的解.这两种形式分别是用“______”和“______”表示不等式的解集.三、解答题(5小题,每小题10分,共计50分)1、解不等式组:.2、 “学党史,办实事”,为解决停车难问题,某区政府治堵办对老旧小区新增停车位给予补贴,对于通过划线方式新增的和建设改造新增的给予不同的补贴.划线4个和建设改造3个,共补贴8000元;划线1个和建设改造1个,共补贴2500元.(1)政府对划线新增一个停车位和建设改造新增一个停车位分别补贴多少元?(2)在(1)的条件下,政府计划对老旧小区一共新增车位100个,建设改造新增的停车位不得少于划线新增停车位的1.5倍,且政府补贴不超过143000元,则老旧小区新增停车位共有几种方案?3、解不等式:,并把它的解集在数轴上表示出来,再写出最大负整数解.4、某企业为了做好“复工复产”期间的人员防护工作,购买了一定数量的一次性防护口罩和N95口罩,这两种口罩的规格.售价如下表所示:(购买时必须整包购买) 数量售价一次性防护口罩50只/包100元/包N95口罩3只/包60元/包(1)已知第一批购得两种口罩共80包,其中一次性防护口罩比N95口罩多买了30包,那么N95口罩买了____包.(2)已知第二批购得两种口罩共计3240只,花费10800元,问一次性防护口罩和N95口罩分别购买了多少包?(3)在第三批购买时,一次性防护口罩价格有所调整,每包降低了10元,N95口罩价格不变,如果该单位第三批总共购买了100包口罩,花费不超过8100元,那么最多能购买一次性防护口罩多少包?5、根据不等式的性质,将下列不等式化成“x>a”或“x<a”的形式.(1)-x>-1;(2)x>x﹣6. -参考答案-一、单选题1、D【解析】【分析】分别解不等式求出不等式组的解集,对应数轴得到答案.【详解】解:解不等式,得x>4,解不等式2x-4<x,得x<4,解不等式x+10,解得x-1,解不等式x+10,解得x-1,∴不等式组无解,不等式组的解集为x>4,不等式组的解集为x-1,不等式组的解集为,由数轴可得不等式组的解集为,故选:D.【点睛】此题考查了求不等式组的解集,正确掌握不等式的性质求解不等式及利用数轴表示不等式的解集的方法是解题的关键.2、D【解析】【分析】根据不等式的基本性质逐项排查即可.【详解】解:A.在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a>3b,故A不正确,不符合题意;B.无法证明,故B选项不正确,不符合题意;C.当c=0时,不等式不成立,故C选项不正确,不符合题意;D.不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D选项正确,符合题意.故选:D.【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.3、D【解析】【分析】已知某市最高气温和最低气温,可知该市的气温的变化范围应该在最高气温和最低气温之间,且包括最高气温和最低气温.【详解】由题意,某市最高气温是33℃,最低气温是24℃,说明其它时间的气温介于两者之间,∴该市气温t(℃)的变化范围是:24≤t≤33;故选:D.【点睛】本题的关键在于准确理解题意,理解到当天的气温的变化范围应在最低气温和最低气温之间.4、D【解析】【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A.∵m>n,∴m+4>n+4,故该选项正确,不符合题意;B.∵m>n,∴,故该选项正确,不符合题意;C.∵m>n,∴,故该选项正确,不符合题意;D.∵m>n,∴,故该选项错误,符合题意;故选:D.【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.5、C【解析】【分析】根据不等式的性质进行分析判断.【详解】解:A、若,则,故选项正确,不合题意;B、若,则,故选项正确,不合题意;C、若,若c=0,则,故选项错误,符合题意;D、若,则,故选项正确,不合题意;故选C.【点睛】本题考查了不等式的性质.解题的关键是掌握不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.6、D【解析】【分析】根据求不等式组的解集方法:“大大小小找不到”判断即可”【详解】若,则不等式组的解集是无解.故选:D.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7、C【解析】略8、B【解析】【分析】由题意根据解一元一次不等式基本步骤:移项、合并同类项,系数化为1求得不等式的解集,进而在数轴上表示即可得出答案.【详解】解:,移项得:,合并得:,解得:,在数轴上表示为:故选:B.【点睛】本题考查解一元一次不等式,熟练掌握一元一次不等式解题步骤,移项、合并同类项、把x系数化为1是解题的关键.9、B【解析】【分析】现用甲,乙两种运输车将46吨抗旱物资运往灾区,此题的等量关系是:甲种车运输物资数+乙种车运输物资数≥46吨.设甲种运输车至少应安排x辆,根据不等关系就可以列出不等式,求出x的值.【详解】解:设乙种车安排了x辆,4x+5×5≥46解得x≥.因为x是正整数,所以x最小值是6.则乙种车至少应安排6辆.故选:B.【点睛】本题主要考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,理解汽车的载重量与货物的数量之间的关系是解决本题的关键.10、C【解析】【分析】先求出方程组和不等式的解集,再求出a的范围,最后得出答案即可.【详解】解:解方程组得:,∵关于x、y的二元一次方程组的解满足,∴≥,解得:a≥-,∵关于s的不等式组恰好有4个整数解,即4个整数解为1,0,-1,-2,∴,解得-2≤a<1,∴≤a<1,∴符合条件的整数a的值有:-1,0,共2个,故选:C.【点睛】本题主要考查了解二元一次方程和一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题1、 去分母 去括号 移项 合并同类项 系数化1【解析】略2、x-2≤3【解析】【分析】首先表示出x与2的差为(x-2),再小于等于3,列出不等式即可.【详解】解:由题意可得:x-2≤3.故答案为:x-2≤3.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,关键是抓住关键词,选准不等号.3、①③④【解析】【分析】①先求出方程组的解,把代入求出、即可;②把代入,求出的值,再根据判断即可;③求出方程组的解,再代入方程,看看方程左右两边是否相等即可;④根据和求出,求出,再求出的范围即可.【详解】解方程组得:,①当时,,,所以、互为相反数,故①正确;②把代入得:,解得:,,此时不符合,故②错误;③当时,,,方程组的解是,把,代入方程得:左边右边,即当时,方程组的解也是方程的解,故③正确;④,,即,,,,,,故④正确;故答案为:①③④.【点睛】本题考查了解二元一次方程组,二元一次方程组的解,一元一次方程的解,解不等式组等知识点,能求出方程组的解是解此题的关键.4、【解析】【分析】根据不等式的性质解答即可.【详解】解:∵x>y,∴x>y,∴-x<−y,∴1-x<1−y,故答案为:<.【点睛】本题考查了不等式的性质,掌握不等式的性质是解题的关键.5、 式子形式 数轴 数 形【解析】略三、解答题1、【解析】【分析】先求出两个不等式的解集,再求其公共解.【详解】解:,解不等式①得,,解不等式②得,,所以不等式组的解集是.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).2、 (1)政府对划线新增一个停车位补贴500元,对建设改造新增一个停车位补贴2000元(2)共有3种方案【解析】【分析】(1)设政府对划线新增一个停车位补贴x元,对建设改造新增一个停车位补贴y元,根据“划线4个和建设改造3个,共补贴8000元;划线1个和建设改造1个,共补贴2500元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设老旧小区划线新增m个停车位,则建设改造新增(100-m)个停车位,根据“建设改造新增的停车位不得少于划线新增停车位的1.5倍,且政府补贴不超过143000元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出老旧小区新增停车位方案的个数.(1)设政府对划线新增一个停车位补贴元,对建设改造新增一个停车位补贴元,依题意得:,解得:.答:政府对划线新增一个停车位补贴500元,对建设改造新增一个停车位补贴2000元.(2)设老旧小区划线新增个停车位,则建设改造新增个停车位,依题意得:,解得:.又为整数,可以为38,39,40,老旧小区新增停车位共有3种方案.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.3、,见解析,不等式的最大负整数解为【解析】【分析】先去分母,移项合并同类项求出不等式的解集,再根据数轴上数的特点表示不等式的解集及确定整数解.【详解】解:,去分母得:,移项合并得:,则不等式的最大负整数解为.【点睛】此题考查了解一元一次不等式,利用数轴表示不等式的解集,以及确定不等式的整数解,正确掌握解一元一次不等式的解法是解题的关键.4、 (1)25(2)一次性防护口罩60包,N95口罩80包(3)最多购买一次性防护口罩70包【解析】【分析】(1)设第一批购得N95口罩x包,则购得一次性防护口罩(x+30)包,根据第一批购得两种口罩共80包,即可得出关于x的一元一次方程,解之即可得出结论;(2)设第二批购得一次性防护口罩a包,N95口罩b包,根据第二批购得两种口罩共计3240只且共花费10800元,即可得出关于a,b的二元一次方程组,解之即可得出结论;(3)设第三批购得一次性防护口罩m包,则购得N95口罩(100−m)包,根据总价=单价×数量结合总价不超过8100元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.(1)解:设第一批购得N95口罩x包,则购得一次性防护口罩(x+30)包,依题意,得:x+x+30=80,解得:x=25.故答案为:25.(2)解:设第二批购得一次性防护口罩a包,N95口罩b包,依题意,得:,解得:.答:第二批购得一次性防护口罩60包,N95口罩80包.(3)解:设第三批购得一次性防护口罩m包,则购得N95口罩(100−m)包,依题意,得:(100−10)m+60(100−m)≤8100,解得:m≤70.答:第三批最多能购买一次性防护口罩70包.【点睛】本题考查了二元一次方程组的应用、一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出二元一次方程组;(3)根据各数量之间的关系,正确列出一元一次不等式.5、 (1)x<2(2)x>﹣12【解析】【分析】(1)不等式两边都乘以-2即可得到解集;(2)不等式的两边同时减去x,再乘以2即可求出解集.(1)解:-x>-1,两边都乘以-2,得x<2.(2)解:原不等式的两边同时减去x,得x>﹣6,不等式的两边同时乘以2,得x>﹣12.【点睛】此题考查了解一元一次不等式,正确掌握解不等式的步骤及方法是解题的关键.
相关试卷
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试习题,共19页。试卷主要包含了下列说法中不正确的个数有等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试复习练习题,共18页。试卷主要包含了下列运算错误的是,当n为自然数时,等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试精练,共16页。试卷主要包含了下列因式分解正确的是,若a,分解因式2a2等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)