初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试巩固练习
展开第十章一元一次不等式和一元一次不等式组综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、不等式组的最小整数解是( )
A.5 B.0 C. D.
2、若,则下列式子一定成立的是( )
A. B. C. D.
3、已知a>b,下列变形一定正确的是( )
A.3a<3b B.4+a>4﹣b C.ac2>bc2 D.3+2a>3+2b
4、若x<y,则下列不等式中不成立的是( )
A.x-5<y-5 B.x<y C.x-y<0 D.-5x<-5y
5、若方程组的解满足,则k的值可能为( )
A.-1 B.0 C.1 D.2
6、若,那么下列各式中正确的是( )
A. B.
C. D.
7、,那么( )
A. B. C. D.无法确定
8、如果,那么下列结论中正确的是( )
A. B. C. D.
9、若x<y成立,则下列不等式成立的是( )
A.﹣x+2<﹣y+2 B.4x>4y C.﹣3x<﹣3y D.x﹣2<y﹣2
10、若关于x的不等式组无解,则m的取值范围是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、不等式的非负整数解为__.
2、若不等式组无解,则m的取值范围是______.
3、解一元一次不等式的一般步骤:
(1)______:各项都乘以分母的最小公倍数;
(2)______:注意符号问题;
(3)______:移动的项要变号;
(4)______ :系数相加减,字母及字母的指数不变;
(5) ______ :不等式两边同时除以未知数的系数.
4、直接写出下列不等式的解集: x+3>6的解集是______;2x<8的解集是______;x-2>0的解集是______.
5、x的取值与代数式ax+b的对应值如表:
x | …… | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | …… |
ax+b | …… | 9 | 7 | 5 | 3 | 1 | ﹣1 | …… |
根据表中信息,得出了如下结论:①b=5;②关于x的方程ax+b=-l的解是x=3;③a+b>-a+b;④ax+b的值随着x值的增大而增大.其中正确的是______.(写出所有正确结论的序号)
三、解答题(5小题,每小题10分,共计50分)
1、某市公交公司为落实“绿色出行,低碳环保”的城市发展理念,计划购买A,B两种型号的新型公交车,已知购买1辆A型公交车和2辆B型公交车需要165万元,2辆A型公交车和3辆B型公交车需要270万元.
(1)求A型公交车和B型公交车每辆各多少万元?
(2)公交公司计划购买A型公交车和B型公交车共140辆,且购买A型公交车的总费用不高于B型公交车的总费用,那么该公司最多购买多少辆A型公交车?
2、解不等式组:,并求出它的所有整数解的和.
3、解不等式:,并把它的解集在数轴上表示出来.
4、利用不等式的性质解下列不等式,并在数轴上表示解集:
(1)x-7>26
(2)3x<2x+1
5、解不等式组:,并把不等式组的解集表示在数轴上.
-参考答案-
一、单选题
1、C
【解析】
【分析】
分别求出各不等式的解集,再求出其公共解集,然后求出最小整数解即可.
【详解】
解:解不等式,得:,
解不等式,得:,
故不等式组的解集为:,
则该不等式组的最小整数解为:.
故选:C.
【点睛】
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
2、B
【解析】
【分析】
根据不等式的性质依次分析判断.
【详解】
解:∵,∴a+1>b+1,故选项A不符合题意;
∵,∴,故选项B符合题意;
∵,∴-2a<-2b,故选项C不符合题意;
∵,∴,故选项D不符合题意;
故选:B.
【点睛】
此题考查了不等式的性质:不等式两边同时加上或减去同一个整式,不等号方向不变;不等式两边同时乘或除以同一个不为0的整正数,不等号方向不变;不等式两边同时乘或除以同一个不为0的负数,不等号方向改变.
3、D
【解析】
【分析】
根据不等式的基本性质逐项排查即可.
【详解】
解:A.在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a>3b,故A不正确,不符合题意;
B.无法证明,故B选项不正确,不符合题意;
C.当c=0时,不等式不成立,故C选项不正确,不符合题意;
D.不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D选项正确,符合题意.
故选:D.
【点睛】
本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.
4、D
【解析】
【分析】
根据不等式的性质逐项分析即可.
【详解】
解:A. ∵x<y,∴x-5<y-5,故不符合题意;
B. ∵x<y,∴,故不符合题意;
C. ∵x<y,∴x-y<0,故不符合题意;
D. ∵x<y,∴,故符合题意;
故选D.
【点睛】
本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.
5、D
【解析】
【分析】
将两个方程组相加得到:,再由即可求出进而求解.
【详解】
解:由题意可知:,
将①+②得到:,
∵,
∴,
解得,
故选:D.
【点睛】
本题考查二元一次方程组的解法及不等式的解法,解题关键是求出,进而求出k的取值范围.
6、C
【解析】
【分析】
根据不等式的性质判断.
【详解】
解:∵,∴a+1>b+1,故选项A错误;
∵,∴-a<-b,故选项B错误;
∵,∴,故选项C正确;
∵,∴,故选项D错误;
故选:C.
【点睛】
此题考查了不等式的性质,熟记不等式的性质是解题的关键.
7、D
【解析】
【分析】
先两边除以,然后根据X的范围分类讨论即可
【详解】
解:把不等式两边同时除以,
得:,
∵当X>0时,Y>X;
当X<0时,Y<X;
∴无法判断X、Y的大小关系,
故选D.
【点睛】
本题考查了不等式的性质的应用,解题的关键是熟练掌握不等式的性质.
8、A
【解析】
【分析】
结合不等式的性质,对各个选项逐个分析,即可得到答案.
【详解】
∵
∴,,即选项B错误;
∴,,即选项A正确,选项C错误;
根据题意,无法推导得,故选项D不正确;
故选:A.
【点睛】
本题考查了不等式的性质 ,解题的关键是熟练掌握不等式的性质并能灵活运用.
9、D
【解析】
【分析】
不等式的性质1:在不等式的两边都加上或减去同一个数,不等号的方向不变,性质2:在不等式的两边都乘以或除以同一个正数,不等号的方向不变,性质3:在不等式的两边都乘以或除以同一个负数,不等号的方向改变;根据不等式的基本性质逐一判断即可.
【详解】
解:A、不等式x<y的两边都乘﹣1,不等号的方向改变,即﹣x>﹣y,
不等式﹣x>﹣y的两边都加上2,不等号的方向不变,即﹣x+2>﹣y+2,原变形错误,
故此选项不符合题意;
B、不等式x<y的两边都乘4,不等号的方向不变,即4x<4y,原变形错误,故此选项不符合题意;
C、不等式x<y的两边都乘﹣3,不等号的方向改变,即﹣3x>﹣3y,原变形错误,故此选项不符合题意;
D、不等式x<y的两边都减去2,不等号的方向不变,即x﹣2<y﹣2,原变形正确,故此选项符合题意;
故选:D.
【点睛】
本题考查的是不等式的基本性质,掌握“不等式的基本性质”是解本题的关键.
10、D
【解析】
【分析】
解两个不等式,再根据“大大小小找不着”可得m的取值范围.
【详解】
解:解不等式得:,
解不等式得:,
∵不等式组无解,
∴,
解得:,
故选:D.
【点睛】
此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则是解题关键.
二、填空题
1、0,1
【解析】
【分析】
根据不等式的性质进行解答即可得,再根据非负整数的定义“正整数和0统称为非负整数”即可得.
【详解】
解:,
,
,
,
所以不等式的非负整数解是0,1,
故答案为:0,1.
【点睛】
本题考查了解不等式,非负整数,解题的关键是掌握解不等式和非负整数的定义.
2、
【解析】
【分析】
求得第一个不等式的解集,借助数轴即可求得m的取值范围.
【详解】
解不等式,得x>2
因不等式组无解,把两个不等式的解集在数轴上表示出来如下:
观察图象知,当m≤2时,满足不等式组无解
故答案为:
【点睛】
本题考查了根据不等式组解的情况确定参数的取值范围,借助数轴数形结合是关键.
3、 去分母 去括号 移项 合并同类项 系数化1
【解析】
略
4、 x>3 x<4 x>2
【解析】
略
5、①②
【解析】
【分析】
根据题意得:当 时, ,可得①正确;当 时,,可得关于x的方程ax+b=-l的解是x=3;故②正确;再由当 时,,当 时,,可得③错误;然后求出 ,,可得当x的值越大, 越小,即 也越小,可得④错误;即可求解.
【详解】
解:根据题意得:当 时, ,故①正确;
当 时,,
∴关于x的方程ax+b=-l的解是x=3;故②正确;
当 时,,
当 时,,
∵ ,
∴ ,故③错误;
∵ ,当 时,,
∴ ,
解得: ,
∴ ,
∴当x的值越大, 越小,即 也越小,
∴ax+b的值随着x值的增大而减小,故④错误;
所以其中正确的是①②.
故答案为:①②
【点睛】
本题主要考查了求代数式的值,解二元一次方程组,不等式的性质,理解表格的意义是解题的关键.
三、解答题
1、 (1)A型公交车每辆45万元,B型公交车每辆60万元;
(2)80
【解析】
【分析】
(1)设A型公交车每辆x万元,B型公交车每辆y万元,由题意:购买1辆A型公交车和2辆B型公交车需要165万元,2辆A型公交车和3辆B型公交车需要270万元.列出二元一次方程组,解方程组即可;
(2)设该公司购买m辆A型公交车,则购买(140-m)辆B型公交车,由题意:购买A型公交车的总费用不高于B型公交车的总费用,列出一元一次不等式,解不等式即可.
(1)
解:设A型公交车每辆x万元,B型公交车每辆y万元,
由题意得:,
解得:,
答:A型公交车每辆45万元,B型公交车每辆60万元;
(2)
解:设该公司购买m辆A型公交车,则购买(140﹣m)辆B型公交车,
由题意得:45m≤60(140﹣m),
解得:m≤80,
答:该公司最多购买80辆A型公交车.
【点睛】
本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
2、不等式组的解集是-2≤x<4,和为3
【解析】
【分析】
先求出两个不等式的解集,再求其公共解,然后写出范围内的整数.
【详解】
解:,
解不等式①得,x≥-2,
解不等式②得,x<4,
所以,不等式组的解集是-2≤x<4,
所以,它的所有整数解的和是-2-1+0+1+2+3=3.
【点睛】
本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
3、,图见解析
【解析】
【分析】
根据题意先求出不等式的解集,再在数轴上表示出不等式的解集即可.
【详解】
解:,
移项,得,
合并同类项,得,
系数化成1,得,
在数轴上表示不等式的解集为:
.
【点睛】
本题考查解一元一次不等式和在数轴上表示不等式的解集,能根据不等式的性质求出不等式的解集是解答此题的关键.
4、 (1)x>33,见解析
(2)x<1,见解析
【解析】
【详解】
(1)根据不等式的性质1,不等式两边加7,不等号的方向不变,
所以:x-7+7>26+7,
x>33.
这个不等式的解集在数轴上的表示如图:
(2)3x<2x+1;
解:(2)根据不等式的性质1,不等式两边减2x,不等号的方向不变,
所以:3x-2x<2x+1-2x,
x<1.
这个不等式的解集在数轴上的表示如图:
5、,数轴表示见解析
【解析】
【分析】
按照解一元一次不等式组的方法和步骤解不等式组,再在数轴上表示解集即可.
【详解】
,
由①得;
由②得;
数轴表示为:
所以,原不等式组的解集是.
【点睛】
本题考查了一元一次不等式组的解法,解题关键是掌握一元一次不等式组的解法和步骤,会在数轴上表示解集.
初中数学冀教版七年级下册第九章 三角形综合与测试综合训练题: 这是一份初中数学冀教版七年级下册第九章 三角形综合与测试综合训练题,共23页。试卷主要包含了三角形的外角和是等内容,欢迎下载使用。
初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试练习题: 这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试练习题,共17页。试卷主要包含了,那么,若,则下列式子中,错误的是等内容,欢迎下载使用。
数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后练习题: 这是一份数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后练习题,共18页。试卷主要包含了如果,那么下列结论中正确的是,若,则下列式子中,错误的是,设m为整数,若方程组的解x等内容,欢迎下载使用。