2021学年第十章 一元一次不等式和一元一次不等式组综合与测试当堂达标检测题
展开第十章一元一次不等式和一元一次不等式组专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知m<n,那么下列各式中,不一定成立的是( )
A.2m<2n B.3﹣m>3﹣n C.mc2<nc2 D.m﹣3<n﹣1
2、海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x,根据题意得( )
A.5x﹣2(20﹣x)≥80 B.5x﹣2(20﹣x)≤80
C.5x﹣2(20﹣x)>80 D.5x﹣2(20﹣x)<80
3、若,那么下列各式中正确的是( )
A. B.
C. D.
4、下列各式中,是一元一次不等式的是( )
A.5-3<8 B.2x-1< C.≥8 D.+2x≤18
5、把不等式组的解集表示在数轴上,正确的是( )
A. B.
C. D.
6、某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x道题,根据题意可列不等式( )
A.10x﹣5(20﹣x)≥125 B.10x+5(20﹣x)≤125
C.10x+5(20﹣x)>125 D.10x﹣5(20﹣x)>125
7、若关于x的不等式组无解,则m的取值范围是( )
A. B. C. D.
8、如果a>b,那么下列结论中,正确的是( )
A.a﹣1>b﹣1 B.1﹣a>1﹣b C. D.﹣2a>﹣2b
9、如果不等式组的解集是,那么a的值可能是( )
A.-2 B.0 C.-0.7 D.
10、下列各式中,是一元一次不等式的是( )
A.5+4>8 B.2x-1
C.2x≤5 D.2x+y>7
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、不等式的最小整数解是______.
2、用数轴表示不等式的解集,应记住下面的规律:
①大于向______画;小于向______画;
②>,<画______圆.空心圆表示______此点
3、不等式﹣5+x≤0非负整数解是____.
4、新双文具店所售文具款式新颖、价格实惠,深受学生喜爱.2020年,文具店购进甲、乙、丙、丁四种文具,甲与乙的销量之和等于丁的销量,丙的销量占丁销量的,四种文具的销量之和不少于2850件,不多于3540件,甲、乙两种文具的进价相同,均为丙与丁的进价之和,四种文具的进价均为正整数且丁文具的进价是偶数,店家购进这四种文具成本一共12012元,且四种文具全部售出;2021年,受疫情影响,文具店不再购进丙文具,每件甲文具进价是去年的倍,每件乙文具进价较去年上涨了20%,每件丁文具进价是去年的2倍,销量之比为4:3:10,其中甲、乙文具单件利润之比为3:4,最后三种文具的总利润率为60%,则甲、乙、丁单价之和为________元.(每种文具售价均为正整数)
5、若,则______(填“>”或“=”或“<”).
三、解答题(5小题,每小题10分,共计50分)
1、解下列不等式组,并在数轴上表示它们的解集
(1)
(2)
2、解不等式组:.
3、解不等式组:,并写出它的所有非负整数解.
4、今年“六一”前夕,某文具店花费2200元采购了A、B两种型号的文具进行销售,其进价和售价之间的关系如表:
型号 | 进价(元/个) | 售价(元/个) |
A型 | 10 | 12 |
B型 | 15 | 20 |
若两种型号的文具按表中售价全部售完,则该商店可以盈利600元.
(1)问该商店当初购进A、B两种型号文具各多少个?
(2)“六一”当天,A、B两种型号文具各剩下20%还未卖出,文具店老板在第二天降价出售,且两种型号文具每件降了同样的价格,要使得这批文具售完后的总盈利不低于546元,那么这两种型号的文具每件最多降多少元?
5、解不等式:.
-参考答案-
一、单选题
1、C
【解析】
【分析】
不等式性质1:在不等式的两边都加上或减去同一个数,不等号的方向不变,性质2:在不等式的两边都乘以或除以同一个正数,不等号的方向不变,性质3:在不等式的两边都乘以或除以同一个负数,不等号的方向改变,根据不等式的性质逐一判断即可.
【详解】
解:A、由m<n,根据不等式性质2,得2m<2n,本选项成立;
B、由m<n,根据不等式性质3,得﹣m>﹣n,再根据不等式性质1,得3﹣m>3﹣n,本选项成立;
C、因为c2≥0,当c2>0时,根据不等式性质2,得mc2<nc2,当c2=0时,mc2=nc2,本选项不一定成立;
D、由m<n,根据不等式性质1,得m﹣3<n﹣2<n﹣1,本选项成立;
故选:C.
【点睛】
本题考查的是不等式的基本性质,掌握“利用不等式的基本性质判断不等式的变形是否正确”是解本题的关键.
2、C
【解析】
【分析】
设小明答对x道题,则答错或不答(20﹣x)道题,根据小明的得分=5×答对的题目数﹣2×答错或不答的题目数结合小明得分要超过80分,即可得出关于x的一元一次不等式.
【详解】
解:设小明答对x道题,则他答错或不答的题数为20﹣x,
依题意,得:5x﹣2(20﹣x)>80.
故选:C.
【点睛】
此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.
3、C
【解析】
【分析】
根据不等式的性质判断.
【详解】
解:∵,∴a+1>b+1,故选项A错误;
∵,∴-a<-b,故选项B错误;
∵,∴,故选项C正确;
∵,∴,故选项D错误;
故选:C.
【点睛】
此题考查了不等式的性质,熟记不等式的性质是解题的关键.
4、D
【解析】
【分析】
一元一次不等式必须具备三个条件:(1)只含有一个未知数;(2)未知数的最高次数是1;(3)分母中不含有未知数,即不等号两边都是整式.根据一元一次不等式的定义逐项判断即可.
【详解】
A:不含有未知数,不是一元一次不等式,故本选项不符合题意;
B:不是整式,故本选项不符合题意;
C:不是整式,故本选项不符合题意;
D:是只含有1个未知数,并且未知数的最高次数是1,用不等号连接的整式,是一元一次不等式,故本选项符合题意.
故选:D.
【点睛】
本题考查一元一次不等式的定义, 一元一次不等式必须具备三个条件:(1)只含有一个未知数;(2)未知数的最高次数是1;(3)分母中不含有未知数,即不等号两边都是整式.
5、D
【解析】
略
6、D
【解析】
【分析】
根据规定每答对一题得10分,答错或不答都扣5分,可以列出相应的不等式,从而可以解答本题.
【详解】
解:由题意可得,
10x-5(20-x)>125,
故选:D.
【点睛】
本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.
7、D
【解析】
【分析】
解两个不等式,再根据“大大小小找不着”可得m的取值范围.
【详解】
解:解不等式得:,
解不等式得:,
∵不等式组无解,
∴,
解得:,
故选:D.
【点睛】
此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则是解题关键.
8、A
【解析】
【分析】
直接利用不等式的基本性质判断即可得出答案.
【详解】
解:A、a>b两边都减去1得a﹣1>b﹣1,故本选项正确;
B、a>b两边都乘以﹣1再加1得1﹣a<1﹣b,故本选项错误;
C、a>b两边都乘以得,,故本选项错误;
D、a>b两边都乘以﹣2得,﹣2a<﹣2b,故本选项错误.
故选:A.
【点睛】
本题主要考查不等式的性质,掌握不等式的性质是解题的关键.
9、A
【解析】
【分析】
根究不等式组解集的确定原则,判定a≤-1,比较大小后,确定即可.
【详解】
∵不等式组的解集是,
∴a≤-1,
只有-2满足条件,
故选A.
【点睛】
本题考查了不等式组解集,正确理解不等式组解集的确定原则是解题的关键.
10、C
【解析】
【分析】
从是否含有不等号,是否含有未知数,未知数的个数是否一个,这个未知数的指数是否为1,四个方面判断即可.
【详解】
∵5+4>8中,没有未知数,
∴不是一元一次不等式,A不符合题意;
∵2x-1,没有不等号,
∴不是一元一次不等式,B不符合题意;
∵2x≤5是一元一次不等式,
∴C符合题意;
∵2x+y>7中,有两个未知数,
∴不是一元一次不等式,D不符合题意;
故选C.
【点睛】
本题考查了一元一次不等式的定义即含有一个未知数且未知数的次数是1的不等式,正确理解定义是解题的关键.
二、填空题
1、3
【解析】
【分析】
先求此不等式的解集,再确定最小的整数解.
【详解】
解:
,
此不等式的最小整数解为3.
故答案为:3
【点睛】
本题考查了解一元一次不等式,正确解一元一次不等式是解本题的关键.
2、 右 左 空心 不含
【解析】
略
3、0,1,2,3,4,5
【解析】
【分析】
先根据不等式的基本性质求出x的取值范围,再根据x的取值范围求出符合条件的x的非负整数解即可.
【详解】
解:移项得:x≤5,
故原不等式的非负整数解为:0,1,2,3,4,5.
故答案为:0,1,2,3,4,5.
【点睛】
本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.
4、
【解析】
【分析】
设2020年丙的销量为件,则丁的销量为件,甲与乙的销量之和为件,设2020年丙的进价为元,丁的进价为元,则甲与乙的进价均为元,再建立不等式组求解甲,乙文具的进价为5元,丙文具的进价为3元,丁文具的进价为2元,设甲,乙,丁的销售单价分别为元,元,元,再建立方程组可得利用二元一次方程组的正整数求解 从而可得答案.
【详解】
解:设2020年丙的销量为件,则丁的销量为件,甲与乙的销量之和为件,
解得: 且为正整数,则
设2020年丙的进价为元,丁的进价为元,则甲与乙的进价均为元,
而
即
四种文具的进价均为正整数且丁文具的进价是偶数,
而 时,不符合题意,舍去,
为正整数,则或
当时,代入中可得
当时,代入中可得 舍去,
所以甲,乙文具的进价为5元,丙文具的进价为3元,丁文具的进价为2元,
所以2021年,甲文具的进价为(元),乙文具的进价为(元),
丁文具的进价唯一(元),
甲,乙,丁的销量之比为4:3:10,
则设甲,乙,丁的销量分别为件,件,件,
总的进价为:
总的销售额为:
设甲,乙,丁的销售单价分别为元,元,元,
甲、乙文具单件利润之比为3:4,
且
而
结合①,②可得:
即 且
每种文具售价均为正整数,且
此时 都不符合题意;
所以:
故答案为:
【点睛】
本题考查的是三元一次方程组的应用,二元一次方程的正整数解问题,不等式组的应用,理解题意,设出恰当的未知数,建立方程组寻求各未知量之间的关系是解本题的关键.
5、<
【解析】
【分析】
根据不等式的性质:①不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变,据此变形即可得.
【详解】
解:∵,
∴,
∴,
故答案为:.
【点睛】
题目主要考查不等式的性质,深刻理解不等式的性质进行变形是解题关键.
三、解答题
1、 (1);
(2)无解.
【解析】
【分析】
(1)求出每个不等式的解集,再求两个不等式解集的公共部分即可;
(2)求出每个不等式的解集,再求两个不等式解集的公共部分即可.
(1)
解不等式①,得:
解不等式②,得:
所以不等式组的解集为:
解集在数轴上表示如下:
(2)
解不等式①,得:
解不等式②,得:
所以不等式组的解集无解
解集在数轴上表示如下:
【点睛】
本题考查了解一元一次不等式组,熟练掌握一元一次不等式的解法是解题的关键.
2、
【解析】
【分析】
先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.
【详解】
解:,
解不等式①得:,
解不等式②得:,
不等式组的解集是.
【点睛】
本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.
3、﹣2<x≤2,非负整数解为0,1,2.
【解析】
【分析】
分别得出两个不等式的解集,找出两个解集的公共部分即可得不等式组的解集,进而可得不等式组的非负整数解.
【详解】
,
解不等式①得:x>﹣2,
解不等式②得:x≤2,
∴不等式组的解集为﹣2<x≤2,
∴非负整数解为0,1,2.
【点睛】
本题考查解一元一次不等式组,正确得出两个不等式的解集是解题关键.
4、 (1)该商店当初购进A型号文具100个,B型号文具80个
(2)1.5元
【解析】
【分析】
(1)设该商店当初购进A型号文具x个,B型号文具y个,根据用2200元购进的A、B两种型号的文具全部售出后可盈利600元,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设这两种型号的文具每件降m元,利用这批文具售完后的总盈利=600﹣剩余文具的数量×每件降低的价格,结合使得这批文具售完后的总盈利不低于546元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
(1)
解:(1)设该商店当初购进A型号文具x个,B型号文具y个,
依题意得:,
解得:.
答:该商店当初购进A型号文具100个,B型号文具80个;
(2)
(2)设这两种型号的文具每件降m元,
依题意得:600﹣(100+80)×20%m≥546,
解得:m≤1.5.
答:这两种型号的文具每件最多降1.5元.
【点睛】
此题考查了二元一次方程组的实际应用,一元一次不等式的实际应用,正确理解题意利用方程组或是不等式解决实际问题是解题的关键.
5、
【解析】
【分析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项可得.
【详解】
两边都乘以12,得:,
去括号,得:,
移项、合并同类项,得:,
系数化为1得,.
【点睛】
本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试巩固练习: 这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试巩固练习,共18页。试卷主要包含了下列说法中错误的是,已知x=1是不等式等内容,欢迎下载使用。
初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后复习题: 这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后复习题,共16页。试卷主要包含了下列不等式不能化成x>-2的是,下列命题中,假命题是等内容,欢迎下载使用。
冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试当堂检测题: 这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试当堂检测题,共17页。试卷主要包含了已知三角形两边长分别为7,不等式的最大整数解是等内容,欢迎下载使用。