初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试练习题
展开第十章一元一次不等式和一元一次不等式组综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、把某个关于x的不等式的解集表示在数轴上如图所示,则该不等式的解集是( )
A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣2
2、若关于的一元一次不等式组的解集为,且关于的方程的解为非负整数,则符合条件的所有整数的和为( )
A.2 B.7 C.11 D.10
3、把不等式组的解集表示在数轴上,正确的是( )
A. B.
C. D.
4、,那么( )
A. B. C. D.无法确定
5、若整数m使得关于x的不等式组 有且只有三个整数解,且关于x,y的二元一次方程组 的解为整数(x,y均为整数),则符合条件的所有m的和为( )
A.27 B.22 C.13 D.9
6、海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x,根据题意得( )
A.5x﹣2(20﹣x)≥80 B.5x﹣2(20﹣x)≤80
C.5x﹣2(20﹣x)>80 D.5x﹣2(20﹣x)<80
7、已知8x+1<-2x,则下列各式中正确的是( )
A.10x+1>0 B.10x+1<0 C.8x-1>2x D.10x>-1
8、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为( )
A.24人 B.23人 C.22人 D.不能确定
9、若,则下列式子中,错误的是( )
A. B. C. D.
10、某天,孟孟与欢欢在讨论攀攀的年龄,欢欢说:“攀攀至多3岁.”而孟孟说:“攀攀的年龄一定大于1岁.”则攀攀年龄的取值范围在数轴上表示正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、 “的4倍减去的差是正数”,用不等式表示为_________.
2、给出下列不等式:①x+1>x-x2;②y-1>3;③x+≥2;④x≤0;⑤3x-y<5,其中属于一元一次不等式的是:___.(只填序号)
3、不等式的解集为______.
4、不等式的解集的表示方法主要有两种:
一是用______(如x>2),即用最简单形式的不等式x>a或x<a(a为常数)表示;
另一种是用______,标出数轴上的某一区间,其中的点对应的数值都是不等式的解.这两种形式分别是用“______”和“______”表示不等式的解集.
5、不等式4x﹣3≤2x+1的非负整数解的和是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、表示下列关系:
(1)x的与-5的和是非负数;
(2)y的3倍与9的差不大于-1.
2、某学校初二年级党支部组织“品读经典,锤炼党性”活动,需要购买不同类型的书籍给党员老师阅读.已知购买1本类书和2本类书共需82元;购买2本类书和1本类书共需74元.
(1)求,两类书的单价;
(2)学校准备购买,两类书共34本,且类书的数量不高于类书的数量.购买书籍的花费不得高于900元,则该学校有哪几种购买方案?
3、某工厂需将产品分别运送至不同的仓库,为节约运费,考察了甲、乙两家运输公司.甲、乙公司的收费标准如下表:
运输公司 | 起步价(单位:元) | 里程价(单位:元/千米) |
甲 | 1000 | 5 |
乙 | 500 | 10 |
(1)仓库A距离该工厂120千米,应选择哪家运输公司?
(2)仓库B,C,D与该工厂的距离分别为60千米、100千米、200千米,运送到哪个仓库时,可以从甲、乙两家运输公司任选一家?
(3)根据以上信息,你能给工厂提供选择甲、乙公司的标准吗?
4、若a>1,则a+2021____a+2020.(填“>”或“<”)
5、解不等式,并把它们的解集分别表示在数轴上
-参考答案-
一、单选题
1、B
【解析】
【分析】
观察数轴上x的范围即可得到答案.
【详解】
解:观察数轴可发现表示的是从-2(空心)开始向右,故该不等式的解集是,
故选B.
【点睛】
本题主要考查对在数轴上表示不等式的解集的理解和掌握,能根据数轴上不等式的解集得出答案是解此题的关键.
2、B
【解析】
【分析】
先解关于的一元一次不等式组,再根据其解集是,得小于5;再解方程,根据其有非负整数解,得出的值,再求积即可.
【详解】
解:由,得:,
由,得:,
不等式组的解集为,
,
解得;
解关于的方程得:,
方程的解为非负整数,
或3或6或9,
解得或2或3.5或5,
所以符合条件的所有整数的和,
故选:B.
【点睛】
此题考查了解一元一次不等式组及一元一次方程的解,熟练掌握各自的解法是解本题的关键.
3、D
【解析】
略
4、D
【解析】
【分析】
先两边除以,然后根据X的范围分类讨论即可
【详解】
解:把不等式两边同时除以,
得:,
∵当X>0时,Y>X;
当X<0时,Y<X;
∴无法判断X、Y的大小关系,
故选D.
【点睛】
本题考查了不等式的性质的应用,解题的关键是熟练掌握不等式的性质.
5、A
【解析】
【分析】
先求出不等式组的解集为,根据不等式组有且只有三个整数解,可得 ,再解出方程组,可得,再根据x,y均为整数,可得取,即可求解.
【详解】
解:
解不等式①,得: ,
解不等式②,得: ,
∴不等式的解集为,
∵不等式组有且只有三个整数解,
∴ ,
解得: ,
∵m为整数,
∴ 取5,6,7,8,9,10,11,12,13,14,15,
,解得: ,
∴当取 时,x,y均为整数,
∴符合条件的所有m的和为 .
故选:A
【点睛】
本题主要考查了解一元一次不等组和二元一次方程组,及其整数解,熟练掌握解一元一次不等组和二元一次方程组的方法是解题的关键.
6、C
【解析】
【分析】
设小明答对x道题,则答错或不答(20﹣x)道题,根据小明的得分=5×答对的题目数﹣2×答错或不答的题目数结合小明得分要超过80分,即可得出关于x的一元一次不等式.
【详解】
解:设小明答对x道题,则他答错或不答的题数为20﹣x,
依题意,得:5x﹣2(20﹣x)>80.
故选:C.
【点睛】
此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.
7、B
【解析】
【分析】
根据不等式的性质解答即可.
【详解】
解:由不等式性质得,在不等式8x+1<-2x的两边同加上2x,不等号的方向不变,即10x+1<0.
故选:B.
【点睛】
本题考查不等式的性质,熟练掌握不等式的性质是解答的关键,注意符号的变化.
8、C
【解析】
【分析】
根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x为整数.
【详解】
解:设每组预定的学生数为x人,由题意得,
解得
是正整数
故选:C.
【点睛】
本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键.
9、D
【解析】
【分析】
利用不等式的基本性质逐一判断即可.
【详解】
解:A. 若,则正确,故A不符合题意;
B. 若,则正确,故B不符合题意;
C. 若,则,正确,故C不符合题意;
D. 若d,则,所以D错误,故D符合题意,
故选:D.
【点睛】
本题考查不等式的性质,掌握相关知识是解题关键.
10、C
【解析】
【分析】
由至多得到小于等于,结合大于得到答案.
【详解】
解:由题意得,攀攀的年龄大于1且小于等于3,
故选:C.
【点睛】
此题考查了在数轴上表示不等式的解集,正确掌握大于、大于等于、小于等于的不同表示方法是解题的关键.
二、填空题
1、
【解析】
【详解】
解:“的4倍减去的差是正数”,用不等式表示为:
故答案为:
【点睛】
本题考查的是列不等式,理解题意,体现准确的运算关系与运算顺序是列式的关键,注意正数即是大于0的数.
2、②④
【解析】
【分析】
根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就是一元一次不等式.
【详解】
①x+1>x-x2是一元二次不等式,故选项不符合题意;
②y-1>3是一元一次不等式,故此选项符合题意;
③x+≥2中不是整式,故选项不符合题意;
④x≤0是一元一次不等式,故此选项符合题意;
⑤3x-y<5;含两个未知数,故选项不符合题意.
故答案为:②④
【点睛】
本题考查一元一次不等式的定义中的未知数的最高次数为1次,本题还要注意未知数的系数不能是0.
3、x>-8
【解析】
【分析】
按照去分母、去括号、移项、合并同类项的步骤求出不等式的解集.
【详解】
解:,
去分母,得
6+x>-2,
移项,得
x>-2-6,
合并同类项,得
x>-8.
故答案为:x>-8.
【点睛】
本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.
4、 式子形式 数轴 数 形
【解析】
略
5、3
【解析】
【分析】
根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1得出不等式的解集,从而得出答案.
【详解】
解:4x﹣3≤2x+1
移项,得:4x﹣2x≤1+3,
合并同类项,得:2x≤4,
系数化为1,得:x≤2,
∴不等式的非负整数解为0、1、2,
∴不等式的非负整数解的和为0+1+2=3,
故答案为:3.
【点睛】
本题主要考查了一元一次不等式的整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.
三、解答题
1、 (1)x-5≥0
(2)3y-9≤-1
【解析】
【分析】
(1)先表示出x的是x,与−5的和为x−5,是非负数得出x−5≥0;
(4)先表示出y的3倍是3y,再表示出与9的差3y−9,然后根据不大于−1即为小于等于,列出不等式即可.
(1)
解:根据题意得:x−5≥0;
(2)
解:根据题意得:3y−9≤−1.
【点睛】
本题考查了由实际问题抽象出一元一次不等式,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.
2、 (1)类书的单价为22元,类书的单价为30元
(2)学校共有3种购买方案:
方案1:购买类书15本,类书19本;
方案2:购买类书16本,类书18本;
方案3:购买类书17本,类书17本.
【解析】
【分析】
(1)设A类书的单价为x元,B类书的单价为y元,根据“购买1本A类书和2本B类书共需82元;购买2本A类书和1本B类书共需74元”,即可得出关于x,y的二元一次方程组,解之即可得出A,B两类书的单价;
(2)设购买A类书m本,则购买B类书(34-m)本,根据“购买A类书的数量不高于B类书的数量,购买书籍的花费不得高于900元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数,即可得出各购买方案.
(1)
解:设类书的单价为元,类书的单价为元,
依题意得:,解得:.
答:类书的单价为22元,类书的单价为30元.
(2)
解:设购买类书本,则购买类书本,
依题意得:,解得:.
又∵为正整数,
∴可以为15,16,17,
∴该学校共有3种购买方案,分别如下所示:
方案1:购买类书15本,类书19本;
方案2:购买类书16本,类书18本;
方案3:购买类书17本,类书17本.
【点睛】
本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.
3、 (1)该工厂选择甲运输公司更划算
(2)运送到C仓库时,甲、乙两家运输公司收费相同,可以任选一家
(3)当仓库与工厂的距离大于100千米时,选择甲公司;当仓库与工厂的距离等于100千米时,可以从甲、乙公司中任选一家;当仓库与工厂的距离小于100千米时,选择乙公司
【解析】
【分析】
(1)根据收费方式分别计算出甲乙公司的费用比较即可;
(2)设当运输距离为x千米时,甲、乙两家运输公司收费相同,由两家公司的收费方式列方程,然后解出即可;
(3)根据收费方式计算出甲公司的费用大于乙公司时的运输距离,和甲公司的费用小于于乙公司时的运输距离即可得出结论.
(1)
甲运输公司收费为(元),
乙运输公司收费为(元).
因为,所以该工厂选择甲运输公司更划算.
(2)
设当运输距离为x千米时,甲、乙两家运输公司收费相同.
根据题意,得,
解得.
答:运送到C仓库时,甲、乙两家运输公司收费相同,可以任选一家.
(3)
当甲公司收费大于乙公司时:, ,
当甲公司收费小于乙公司时:,,
综上:当仓库与工厂的距离大于100千米时,选择甲公司;
当仓库与工厂的距离等于100千米时,可以从甲、乙公司中任选一家;
当仓库与工厂的距离小于100千米时,选择乙公司.
【点睛】
本题考查了一元一次方程的实际应用及一元一次不等式的应用,依据题意,正确建立方程是解题关键.
4、>
【解析】
【分析】
根据不等式的性质:不等式两边同时加或减同一个数,不等号不变,即可得出答案.
【详解】
∵2021>2020,
∴a+2021>a+2020.
故答案为:>.
【点睛】
本题考查不等式的性质,掌握不等式两边同时加或减同一个数,不等号的方向不变是解题的关键.
5、x>1,见解析
【解析】
【详解】
解:去分母,得4x-2>3x-1.
移项,得4x-3x>-1+2.
合并同类项,得x>1.
这个 不等式的解集在数轴上表示为:
初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试巩固练习: 这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试巩固练习,共16页。试卷主要包含了若,那么下列各式中正确的是,,那么,如果,那么下列结论中正确的是等内容,欢迎下载使用。
冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后复习题: 这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后复习题,共18页。试卷主要包含了现有甲,下列各数中,是不等式的解的是等内容,欢迎下载使用。
初中数学第十章 一元一次不等式和一元一次不等式组综合与测试随堂练习题: 这是一份初中数学第十章 一元一次不等式和一元一次不等式组综合与测试随堂练习题,共19页。试卷主要包含了已知关于x,设m为整数,若方程组的解x等内容,欢迎下载使用。