2020-2021学年第十章 一元一次不等式和一元一次不等式组综合与测试课后作业题
展开
这是一份2020-2021学年第十章 一元一次不等式和一元一次不等式组综合与测试课后作业题,共19页。
第十章一元一次不等式和一元一次不等式组章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若整数m使得关于x的不等式组 有且只有三个整数解,且关于x,y的二元一次方程组 的解为整数(x,y均为整数),则符合条件的所有m的和为( )A.27 B.22 C.13 D.92、在二元一次方程12x+y=8中,当y<0时,x的取值范围是( ).A. B. C. D.3、下列不等式中,属于一元一次不等式的是( )A.4>1 B.3x-24<4C. <2 D.4x-3<2y-74、若方程组的解满足,则k的值可能为( )A.-1 B.0 C.1 D.25、若m>n,则下列不等式不成立的是( )A.m+4>n+4 B.﹣4m<﹣4n C. D.m﹣4<n﹣46、若a<0,则关于x的不等式|a|x>a的解集是( )A.x>1 B.x>﹣1 C.x>1 D.x>﹣17、在数轴上表示某不等式组的解集,如图所示,则这个不等式组可能是( )A. B. C. D.8、某天,孟孟与欢欢在讨论攀攀的年龄,欢欢说:“攀攀至多3岁.”而孟孟说:“攀攀的年龄一定大于1岁.”则攀攀年龄的取值范围在数轴上表示正确的是( )A. B.C. D.9、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为( )A.24人 B.23人 C.22人 D.不能确定10、已知关于x的不等式组无解,则a的取值范围是( )A.a≤﹣2 B.a>3 C.﹣2<a<3 D.a<﹣2或a>3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知关于,的方程组,其中,给出下列命题:①当时,,的值互为相反数;②是方程组的解;③当时,方程组的解也是方程的解;④若,则.其中正确命题的序号是 __.(把所有正确命题的序号都填上)2、一般地,一个含有未知数的不等式的所有的解,组成这个______.求不等式的解集的过程叫______.3、已知x为不等式组的解,则的值为______.4、把一些笔分给几名学生,如果每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,则共有学生___人.5、在某校班级篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜___场.三、解答题(5小题,每小题10分,共计50分)1、小明早上七点骑自行车从家出发,以每小时18千米的速度到距家7千米的学校上课,行至距学校1千米的地方时,自行车突然发生故障,小明只得改为步行前往学校,如果他想在7点30分赶到学校,那么他每小时步行的速度至少是多少千米?2、南山荔枝,广东省深圳市南山区特产,中国国家地理标志产品,品种多样.共有6个品种,“糯米糍”和“妃子笑”是其中两个品种.某水果商从批发市场用8000元购进了“糯米糍”和“妃子笑”各200千克,“糯米糍”的进价比“妃子笑”的进价每千克多20元.“糯米糍”售价为每千克40元,“妃子笑”售价为每千克16元.(1)“糯米糍”和“妃子笑”的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了“糯米糍”和“妃子笑”各200千克,进价不变,但在运输过程中“妃子笑”损耗了20%.若“妃子笑”的售价不变,要想让第二次赚的钱不少于第一次所赚的钱,“糯米糍”的售价最少应为多少?3、在近几年的两会中,有多位委员不断提出应在中小学开展编程教育,2019年3月教育部公布的《2019年教育信息化和网络安全工作要点》中也提出将推广编程教育.某学校的编程课上,一位同学设计了一个运算程序,如图所示.按上述程序进行运算,程序运行到“判断结果是否大于23”为一次运行.(1)若,直接写出该程序需要运行 次才停止;(2)若该程序只运行了1次就停止了,则的取值范围是 .(3)若该程序只运行了2次就停止了,求的取值范围.4、快递员把货物送到客户手中称为送件,帮客户寄出货物称为揽件.快递员的提成取决于送件数和揽件数.某快递公司快递员小李若平均每天的送件数和揽件数分别为80件和20件,则他平均每天的提成是160元;若平均每天的送件数和揽件数分别为120件和25件,则他平均每天的提成是230元(1)求快递员小李平均每送一件和平均每揽一件的提成各是多少元;(2)已知快递员小李一周内平均每天的送件数和揽件数共计200件,且揽件数不大于送件数的.如果他平均每天的提成不低于318,求他平均每天的送件数.5、解不等式:2(3﹣y)≤4﹣3(y﹣1). -参考答案-一、单选题1、A【解析】【分析】先求出不等式组的解集为,根据不等式组有且只有三个整数解,可得 ,再解出方程组,可得,再根据x,y均为整数,可得取,即可求解.【详解】解:解不等式①,得: ,解不等式②,得: ,∴不等式的解集为,∵不等式组有且只有三个整数解,∴ ,解得: ,∵m为整数,∴ 取5,6,7,8,9,10,11,12,13,14,15,,解得: ,∴当取 时,x,y均为整数,∴符合条件的所有m的和为 .故选:A【点睛】本题主要考查了解一元一次不等组和二元一次方程组,及其整数解,熟练掌握解一元一次不等组和二元一次方程组的方法是解题的关键.2、C【解析】略3、B【解析】略4、D【解析】【分析】将两个方程组相加得到:,再由即可求出进而求解.【详解】解:由题意可知:,将①+②得到:,∵,∴,解得,故选:D.【点睛】本题考查二元一次方程组的解法及不等式的解法,解题关键是求出,进而求出k的取值范围.5、D【解析】【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A.∵m>n,∴m+4>n+4,故该选项正确,不符合题意;B.∵m>n,∴,故该选项正确,不符合题意;C.∵m>n,∴,故该选项正确,不符合题意;D.∵m>n,∴,故该选项错误,符合题意;故选:D.【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.6、B【解析】【分析】由a<0,解得|a|=-a,再据得到一元一次不等式-ax>a,再根据不等式的性质解题即可.【详解】解:因为a<0,所以|a|=-a,所以|a|x>a-ax>a-x<1x>-1故选:B.【点睛】本题考查解一元一次不等式、绝对值的性质等知识,是基础考点,掌握相关知识是解题关键.7、D【解析】【分析】分别解不等式求出不等式组的解集,对应数轴得到答案.【详解】解:解不等式,得x>4,解不等式2x-4<x,得x<4,解不等式x+10,解得x-1,解不等式x+10,解得x-1,∴不等式组无解,不等式组的解集为x>4,不等式组的解集为x-1,不等式组的解集为,由数轴可得不等式组的解集为,故选:D.【点睛】此题考查了求不等式组的解集,正确掌握不等式的性质求解不等式及利用数轴表示不等式的解集的方法是解题的关键.8、C【解析】【分析】由至多得到小于等于,结合大于得到答案.【详解】解:由题意得,攀攀的年龄大于1且小于等于3,故选:C.【点睛】此题考查了在数轴上表示不等式的解集,正确掌握大于、大于等于、小于等于的不同表示方法是解题的关键.9、C【解析】【分析】根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x为整数.【详解】解:设每组预定的学生数为x人,由题意得,解得是正整数故选:C.【点睛】本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键.10、B【解析】【分析】根据大大小小无解找,确定a的值即可.【详解】∵关于x的不等式组无解,∴a>3,故选:B.【点睛】本题考查了不等式组的解集,熟练掌握一元一次不等式组的解集确定方法是解题的关键.二、填空题1、①③④【解析】【分析】①先求出方程组的解,把代入求出、即可;②把代入,求出的值,再根据判断即可;③求出方程组的解,再代入方程,看看方程左右两边是否相等即可;④根据和求出,求出,再求出的范围即可.【详解】解方程组得:,①当时,,,所以、互为相反数,故①正确;②把代入得:,解得:,,此时不符合,故②错误;③当时,,,方程组的解是,把,代入方程得:左边右边,即当时,方程组的解也是方程的解,故③正确;④,,即,,,,,,故④正确;故答案为:①③④.【点睛】本题考查了解二元一次方程组,二元一次方程组的解,一元一次方程的解,解不等式组等知识点,能求出方程组的解是解此题的关键.2、 不等式的解集 解不等式【解析】略3、2【解析】【分析】解不等式组得到x的范围,再根据绝对值的性质化简.【详解】解:,解不等式①得:,解不等式②得:,∴不等式组的解集为:,∴===2故答案为:2.【点睛】本题考查了解不等式组,绝对值的性质,解题的关键是解不等式组得到x的范围.4、11或12##12或11【解析】【分析】根据每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,得出5x+7≥6(x-1)+1,且6(x-1)+3>5x+7,分别求出即可.【详解】解:假设共有学生x人,根据题意得出:,解得:10<x≤12.因为x是正整数,所以符合条件的x的值是11或12,故答案为:11或12.【点睛】此题主要考查了一元一次不等式组的应用,根据题意找出不等关系得出不等式组是解决问题的关键.5、8【解析】【分析】设这个班要胜x场,则负场,根据题意列出不等式求解,考虑场次为整数即可得出.【详解】解:设这个班要胜x场,则负场,由题意得,,解得:,∵场次x为正整数,∴.答:这个班至少要胜8场.故答案为:8.【点睛】题目主要考查一元一次不等式的应用,理解题意,列出相应不等式求解是解题关键.三、解答题1、小明每小时步行的速度至少是6千米.【解析】【分析】设小明步行的速度为x千米/时,利用路程=速度×时间,结合小明想在7点30分之前赶到学校,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设小明步行的速度为x千米/时,依题意得:(7-1)+(-)x≥7,解得:x≥6.答:每小时步行的速度至少是6千米.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.2、 (1)“糯米糍”的进价是30元/千克,“妃子笑”的进价是10元/千克,销售完后,该水果商共赚了3200元钱.(2)43.2元/千克【解析】【分析】(1)设“糯米糍”的进价是x元/千克,则“妃子笑”的进价是(x﹣20)元/千克,根据某水果商从批发市场用8000元购进了“糯米糍”和“妃子笑”各200千克,即可得出关于x的一元一次方程,解之即可得出x的值,将其代入(x﹣20)中可求出“妃子笑”的进价,再利用总利润=销售单价×销售数量﹣进货总价,即可求出全部售出后获得的利润;(2)设“糯米糍”的售价应为m元/千克,根据总利润=销售单价×销售数量﹣进货总价,结合第二次赚的钱不少于第一次所赚的钱,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.(1)解:设“糯米糍”的进价是x元/千克,则“妃子笑”的进价是(x﹣20)元/千克,依题意得:200x+200(x﹣20)=8000,解得:x=30,∴x﹣20=10.200×40+200×16﹣8000=3200(元).答:“糯米糍”的进价是30元/千克,“妃子笑”的进价是10元/千克,销售完后,该水果商共赚了3200元钱.(2)设“糯米糍”的售价应为m元/千克,依题意得:200m+200×(1﹣20%)×16﹣8000≥3200,解得:m≥43.2,答:“糯米糍”的售价最少应为43.2元/千克.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.3、 (1)4(2)(3)【解析】【分析】(1)当时,根据2x-3求代数式的值,,循环代入x=7,代数式的值,,再代入x=11,,再看x=19时,.该程序需要运行4次才停止.(2)根据一次运算就停止,列不等式,解不等式即可. (3)根据该程序只运行1次结果小于23,2次结果大于23就停,解不等式①得x≤13,解不等式②得x>8,不等式的解集:.(1)解:,,,.若,该程序需要运行4次才停止.故答案为:4.(2)解:该程序只运行了1次就停止了依题意得:,解得:. 故答案为:.(3)依题意得:,解不等式①得x≤13,解不等式②得x>8,不等式的解集:.答:的取值范围为.【点睛】本题考查了程序与代数式的值,一元一次不等式的应用以及一元一次不等式组的应用,解题的关键是:(1)代入,找出程序运行的次数;(2)根据各数量之间的关系,正确列出一元一次不等式;(3)根据各数量之间的关系,正确列出一元一次不等式组.4、 (1)快递员小李平均每送一件和平均每揽一件的提成各是1.5元和2元(2)他平均每天的送件数是160件或161件或162件或163件或164件【解析】【分析】(1)设快递员小李平均每送一件的提成是元,平均每揽一件的提成是元,列二元一次方程求解;(2)设他平均每天的送件数是件,则他平均每天的揽件数是件,列不等式组求解.(1)解:设快递员小李平均每送一件的提成是元,平均每揽一件的提成是元,根据题意得:,解得,答:快递员小李平均每送一件和平均每揽一件的提成各是1.5元和2元;(2)解:设他平均每天的送件数是件,则他平均每天的揽件数是件,根据题意得:,解得,是正整数,的值为160,161,162,163,164,答:他平均每天的送件数是160件或161件或162件或163件或164件.【点睛】此题考查了二元一次方程组的实际应用,一元一次不等式组的实际应用,正确理解题意是解题的关键.5、y≤1【解析】【分析】去括号、移项、合并同类项即可求解.【详解】解:去括号,得6﹣2y≤4﹣3y+3,移项,得﹣2y+3y≤4+3﹣6,合并同类项,得y≤1.【点睛】此题考查了解一元一次不等式,正确掌握解不等式的步骤及运算法则是解题的关键.
相关试卷
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后复习题,共20页。试卷主要包含了下列各式等内容,欢迎下载使用。
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步达标检测题,共23页。
这是一份初中数学第十章 一元一次不等式和一元一次不等式组综合与测试同步达标检测题,共21页。试卷主要包含了关于x的方程3﹣2x=3,设m为整数,若方程组的解x等内容,欢迎下载使用。