冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试复习练习题
展开
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试复习练习题,共17页。试卷主要包含了如果,那么下列结论中正确的是,下列各式,如果,不等式4x-8≤0的解集是,不等式的最小整数解是等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中不正确的个数有( )①有理数的倒数是②绝对值相等的两个数互为相反数③绝对值既是它本身也是它的相反数的数只有0④几个有理数相乘,若有奇数个负因数,则乘积为负数⑤若,则A.1个 B.2个 C.3个 D.4个2、若整数m使得关于x的不等式组 有且只有三个整数解,且关于x,y的二元一次方程组 的解为整数(x,y均为整数),则符合条件的所有m的和为( )A.27 B.22 C.13 D.93、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )A.10 B.8 C.7 D.44、如果,那么下列结论中正确的是( )A. B. C. D.5、下列各式:①1﹣x:②4x+5>0;③x<3;④x2+x﹣1=0,不等式有( )个.A.1 B.2 C.3 D.46、如果、都是实数,且,那么下列结论中,正确的是( )A. B. C. D.7、已知关于x的不等式组无解,则a的取值范围是( )A.a≤﹣2 B.a>3 C.﹣2<a<3 D.a<﹣2或a>38、不等式4x-8≤0的解集是( )A.x≥-2 B.x≤-2C.x≥2 D.x≤29、不等式的最小整数解是( )A. B.3 C.4 D.510、下列不等式是一元一次不等式的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、 “寒辞去冬雪,暖带入春风”,随着新春佳节的临近,家家户户都在准备年货,腊肉香肠几乎是川渝地区必备的年货之一.某超市购进一批川味香肠和广味香肠进行销售,试销期间,两种香肠各销售100千克,销售总额为12000元,利润率为20%.正式销售时,超市决定将两种香肠混装成礼盒的形式促销(每个礼盒的成本为混装香肠的成本之和),其中A礼盒混装2千克广味香肠,2千克川味香肠;B礼盒混装1千克广味香肠,3千克川味香肠,两种礼盒的数量之和不超过180个.超市工作人员在对这批礼盒进行成本核算时将两种香肠的成本刚好弄反,这样核算出的成本比实际成本少了500元,则超巿混装A、B两种礼盒的总成本最多为______元.2、一元一次不等式的概念:2x-6>0,3x-24<4+x这些不等式的左右两边都是______,只含有______,并且未知数的最高次数是______,像这样的不等式,叫做一元一次不等式.3、 “x的3倍与2的和不大于5”用不等式表示为 _________.4、若减去-(2x-3)所得的差是非负数,用不等式表示:__________.5、不等式的性质:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向______.不等式两边乘(或除以)同一个正数,不等号的方向______.不等式两边乘(或除以)同一个负数,不等号的方向______.三、解答题(5小题,每小题10分,共计50分)1、小明早上七点骑自行车从家出发,以每小时18千米的速度到距家7千米的学校上课,行至距学校1千米的地方时,自行车突然发生故障,小明只得改为步行前往学校,如果他想在7点30分赶到学校,那么他每小时步行的速度至少是多少千米?2、解不等式组:.3、今年“六一”前夕,某文具店花费2200元采购了A、B两种型号的文具进行销售,其进价和售价之间的关系如表:型号进价(元/个)售价(元/个)A型1012B型1520 若两种型号的文具按表中售价全部售完,则该商店可以盈利600元.(1)问该商店当初购进A、B两种型号文具各多少个?(2)“六一”当天,A、B两种型号文具各剩下20%还未卖出,文具店老板在第二天降价出售,且两种型号文具每件降了同样的价格,要使得这批文具售完后的总盈利不低于546元,那么这两种型号的文具每件最多降多少元?4、快递员把货物送到客户手中称为送件,帮客户寄出货物称为揽件.快递员的提成取决于送件数和揽件数.某快递公司快递员小李若平均每天的送件数和揽件数分别为80件和20件,则他平均每天的提成是160元;若平均每天的送件数和揽件数分别为120件和25件,则他平均每天的提成是230元(1)求快递员小李平均每送一件和平均每揽一件的提成各是多少元;(2)已知快递员小李一周内平均每天的送件数和揽件数共计200件,且揽件数不大于送件数的.如果他平均每天的提成不低于318,求他平均每天的送件数.5、解不等式组,并写出它的所有非负整数解. -参考答案-一、单选题1、B【解析】【分析】由倒数的定义可判断①,由绝对值的含义可判断②③,由有理数的乘法中积的符号确定方法可判断④,由不等式的基本性质可判断⑤,从而可得答案.【详解】解:因为 所以有理数的倒数是,故①正确;不符合题意绝对值相等的两个数互为相反数或者相等,故②不正确;符合题意;绝对值既是它本身也是它的相反数的数只有0,故③正确;不符合题意;几个不为零有理数相乘,若有奇数个负因数,则乘积为负数,若其中一个因数为0,则结果为0,故④不正确;符合题意;若,则,故⑤正确;不符合题意;所以②④符合题意故选: B.【点睛】本题考查的是倒数的含义,绝对值的含义,有理数乘法中积的符号确定,不等式的性质,掌握以上基础知识是解本题的关键.2、A【解析】【分析】先求出不等式组的解集为,根据不等式组有且只有三个整数解,可得 ,再解出方程组,可得,再根据x,y均为整数,可得取,即可求解.【详解】解:解不等式①,得: ,解不等式②,得: ,∴不等式的解集为,∵不等式组有且只有三个整数解,∴ ,解得: ,∵m为整数,∴ 取5,6,7,8,9,10,11,12,13,14,15,,解得: ,∴当取 时,x,y均为整数,∴符合条件的所有m的和为 .故选:A【点睛】本题主要考查了解一元一次不等组和二元一次方程组,及其整数解,熟练掌握解一元一次不等组和二元一次方程组的方法是解题的关键.3、C【解析】【分析】根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.【详解】解:条线段的长分别是4,4,m,若它们能构成三角形,则,即又为整数,则整数m的最大值是7故选C【点睛】本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.4、A【解析】【分析】结合不等式的性质,对各个选项逐个分析,即可得到答案.【详解】∵∴,,即选项B错误;∴,,即选项A正确,选项C错误;根据题意,无法推导得,故选项D不正确;故选:A.【点睛】本题考查了不等式的性质 ,解题的关键是熟练掌握不等式的性质并能灵活运用.5、B【解析】【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:根据不等式的定义可知,所有式子中是不等式的是②4x+5>0; ③x<3,有2个.故选:B.【点睛】本题主要考查了不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子叫作不等式.6、B【解析】【分析】根据题意和不等式的性质,赋予特殊值,可以判断各个选项中的结论是否成立,从而可以解答本题.【详解】解:、都是实数,且,当为负数时,,故选项A错误;,则,故选项B正确;当,时,,故选项C错误;,时,,故选项D错误;故选:B.【点睛】本题考查不等式,解答本题的关键是明确题意,利用不等式的性质解答.7、B【解析】【分析】根据大大小小无解找,确定a的值即可.【详解】∵关于x的不等式组无解,∴a>3,故选:B.【点睛】本题考查了不等式组的解集,熟练掌握一元一次不等式组的解集确定方法是解题的关键.8、D【解析】【分析】根据题意先移项,再把x的系数化为1即可得出答案.【详解】解:不等式4x-8≤0,移项得,4x≤8,把x的系数化为1得,x≤2.故选:D.【点睛】本题考查的是解一元一次不等式,熟练掌握解一元一次不等式的基本步骤是解答此题的关键.9、C【解析】【分析】先求出不等式解集,即可求解.【详解】解: 解得: 所以不等式的最小整数解是4.故选:C.【点睛】本题考查了一元一次不等式的解法,正确解不等式,求出解集是解决本题的关键.10、B【解析】【分析】根据含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式进行分析即可.【详解】解:A、未知数的次数含有2次,不是一元一次不等式,故此选项不合题意;B、是一元一次不等式,故此选项符合题意;C、是分式,故该不等式不是一元一次不等式,故此选项不合题意;D、含有两个未知数,不是一元一次不等式,故此选项不合题意;故选:B.【点睛】此题主要考查了一元一次不等式定义,关键是掌握一元一次不等式的定义.二、填空题1、36250【解析】【分析】设每千克川味香肠的成本为元,每千克广味香肠的成本为元,先根据利润率的计算公式可得,从而可分别求出每个礼盒的实际成本和核算出的成本,再设礼盒的数量为个,礼盒的数量为个,根据“核算出的成本比实际成本少了500元”可得,从而可得,然后结合求出超巿混装两种礼盒的总成本的最大值即可得.【详解】解:设每千克川味香肠的成本为元,每千克广味香肠的成本为元,由题意得:,即,则每个礼盒的实际成本和核算出的成本均为(元),每个礼盒的实际成本为(元),核算出的成本为(元),设礼盒的数量为个,礼盒的数量为个,由题意得:,即,联立,解得,则超巿混装两种礼盒的总成本为,即超巿混装两种礼盒的总成本最多为36250元,故答案为:36250.【点睛】本题考查了列代数式、二元一次方程组的应用等知识点,通过设立未知数,正确找出等量关系是解题关键.2、 整式 一个未知数 1【解析】略3、3x+2≤5【解析】【分析】不大于就是小于等于的意思,根据x的3倍与2的和不大于5,可列出不等式.【详解】解:由题意得:3x+2≤5,故答案为:3x+2≤5.【点睛】本题考查由实际问题抽象出一元一次不等式,关键是抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.4、##【解析】【分析】根据题意由减去-(2x-3)所得的差是非负数,即可列出不等式,解出不等式即可.【详解】解:依题意得:-[-(2x-3)]≥0,即+2x-3≥0.故答案为:.【点睛】本题考查由实际问题抽象出一元一次不等式以及整式的加减,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.5、 不变 不变 改变【解析】略三、解答题1、小明每小时步行的速度至少是6千米.【解析】【分析】设小明步行的速度为x千米/时,利用路程=速度×时间,结合小明想在7点30分之前赶到学校,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设小明步行的速度为x千米/时,依题意得:(7-1)+(-)x≥7,解得:x≥6.答:每小时步行的速度至少是6千米.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.2、【解析】【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.【详解】解:,解不等式①得:,解不等式②得:,不等式组的解集是.【点睛】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.3、 (1)该商店当初购进A型号文具100个,B型号文具80个(2)1.5元【解析】【分析】(1)设该商店当初购进A型号文具x个,B型号文具y个,根据用2200元购进的A、B两种型号的文具全部售出后可盈利600元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设这两种型号的文具每件降m元,利用这批文具售完后的总盈利=600﹣剩余文具的数量×每件降低的价格,结合使得这批文具售完后的总盈利不低于546元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.(1)解:(1)设该商店当初购进A型号文具x个,B型号文具y个,依题意得:, 解得:. 答:该商店当初购进A型号文具100个,B型号文具80个;(2)(2)设这两种型号的文具每件降m元,依题意得:600﹣(100+80)×20%m≥546,解得:m≤1.5.答:这两种型号的文具每件最多降1.5元.【点睛】此题考查了二元一次方程组的实际应用,一元一次不等式的实际应用,正确理解题意利用方程组或是不等式解决实际问题是解题的关键.4、 (1)快递员小李平均每送一件和平均每揽一件的提成各是1.5元和2元(2)他平均每天的送件数是160件或161件或162件或163件或164件【解析】【分析】(1)设快递员小李平均每送一件的提成是元,平均每揽一件的提成是元,列二元一次方程求解;(2)设他平均每天的送件数是件,则他平均每天的揽件数是件,列不等式组求解.(1)解:设快递员小李平均每送一件的提成是元,平均每揽一件的提成是元,根据题意得:,解得,答:快递员小李平均每送一件和平均每揽一件的提成各是1.5元和2元;(2)解:设他平均每天的送件数是件,则他平均每天的揽件数是件,根据题意得:,解得,是正整数,的值为160,161,162,163,164,答:他平均每天的送件数是160件或161件或162件或163件或164件.【点睛】此题考查了二元一次方程组的实际应用,一元一次不等式组的实际应用,正确理解题意是解题的关键.5、-4≤x<2;0,1【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分求出不等式组的解集,进而求出非负整数解即可.【详解】解:,由①得:x<2,由②得:x≥-4,∴不等式组的解集为-4≤x<2,则不等式组的非负整数解为0,1.【点睛】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.
相关试卷
这是一份2020-2021学年第十章 一元一次不等式和一元一次不等式组综合与测试课后作业题,共16页。试卷主要包含了已知x=1是不等式,若成立,则下列不等式成立的是,不等式的最小整数解是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后练习题,共16页。试卷主要包含了下列不等式不能化成x>-2的是,下列各式等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步训练题,共19页。试卷主要包含了若m<n,则下列各式正确的是,若成立,则下列不等式成立的是,下列不等式是一元一次不等式的是等内容,欢迎下载使用。