2021学年第九章 三角形综合与测试测试题
展开
这是一份2021学年第九章 三角形综合与测试测试题,共22页。试卷主要包含了如图,在中,,,则外角的度数是等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有下列长度的三条线段,其中能组成三角形的是( )A.4,5,9 B.2.5,6.5,10 C.3,4,5 D.5,12,172、如图,图形中的的值是( )A.50 B.60 C.70 D.803、数学课上,同学们在作中AC边上的高时,共画出下列四种图形,其中正确的是( ).A. B.C. D.4、已知,一块含30°角的直角三角板如图所示放置,,则等于( )A.140° B.150° C.160° D.170°5、如图,钝角中,为钝角,为边上的高,为的平分线,则与、之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )A. B.C. D.6、如图,一扇窗户打开后,用窗钩AB可将其固定( )A.三角形的稳定性B.两点之间线段最短C.四边形的不稳定性D.三角形两边之和大于第三边7、如图,在中,,,则外角的度数是( )A.35° B.45° C.80° D.100°8、如图, AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )A.6 B.5 C.4 D.39、如图,和相交于点O,则下列结论不正确的是( )A. B. C. D.10、如图,是的中线,,则的长为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC中,∠C=90°,AD是BC边上的中线,交BC于点D,CD=5cm,AC=12cm,则△ABD的面积是__________cm2.2、如图,AD是△ABC的中线,BE是△ABD的中线,若△ABC的面积为24 cm2,则△ABE的面积为________cm23、如图,△ABC的面积等于35,AE=ED,BD=3DC,则图中阴影部分的面积等于 _______ 4、如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是 _____.5、不等边三角形的最长边是9,最短边是4,第三边的边长是奇数,则第三边的长度是___.三、解答题(5小题,每小题10分,共计50分)1、如图,已知△ABC的高AD和角平分线AE,∠B=26°,∠ACD=56°,求(1)∠CAD的度数;(2)∠AED的度数.2、请解答下列各题:(1)阅读并回答:科学实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等.如图1,一束平行光线与射向一个水平镜面后被反射,此时,.①由条件可知:,依据是 ,,依据是 .②反射光线与平行,依据是 .(2)解决问题:如图2,一束光线射到平面镜上,被反射到平面镜上,又被镜反射,若射出的光线平行于,且,则 ; .3、如图,已知点D为△ABC的边BC延长线上一点,DF⊥AB于点F,并交AC于点E,其中∠A=∠D=40°.求∠B和∠ACD的度数.4、用无刻度的直尺作图,保留作图痕迹. (1)在图1中,BD是△ABC的角平分线,作△ABC的平分内角∠BCA的角平分线;(2)在图2中,AD是∠BAC的角平分线,作△ABC的∠BCA相邻的外角的角平分线. 5、如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°,求∠BED的度数. -参考答案-一、单选题1、C【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.【详解】解:根据三角形的三边关系,得,、,不能够组成三角形,不符合题意;、,不能够组成三角形,不符合题意;、,能够组成三角形,符合题意;、,不能组成三角形,不符合题意;故选:C.【点睛】此题主要考查了三角形三边关系,解题的关键是掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.2、B【解析】【分析】根据三角形外角的性质:三角形一个外角的度数等于与其不相邻的两个内角的度数和进行求解即可.【详解】解:由题意得: ∴,∴,故选B.【点睛】本题主要考查了三角形外角的性质,解一元一次方程,熟知三角形外角的性质是解题的关键.3、A【解析】【分析】满足两个条件:①经过点B;②垂直AC,由此即可判断.【详解】解:根据垂线段的定义可知,A选项中线段BE,是点B作线段AC所在直线的垂线段,故选:A.【点睛】本题考查作图-复杂作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、D【解析】【分析】利用三角形外角与内角的关系,先求出∠3,利用平行线的性质得到∠4的度数,再利用三角形外角与内角的关系求出∠1.【详解】解:∵∠C=90°,∠2=∠CDE=50°,∠3=∠C+∠CDE=90°+50°=140°.∵a∥b,∴∠4=∠3=140°.∵∠A=30°∴∠1=∠4+∠A=140°+30°=170°.故选:D.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.5、B【解析】【分析】根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.【详解】解:由三角形内角和知∠BAC=180°-∠2-∠1,∵AE为∠BAC的平分线,∴∠BAE=∠BAC=(180°-∠2-∠1).∵AD为BC边上的高,∴∠ADC=90°=∠DAB+∠ABD.又∵∠ABD=180°-∠2,∴∠DAB=90°-(180°-∠2)=∠2-90°,∴∠EAD=∠DAB+∠BAE=∠2-90°+(180°-∠2-∠1)=(∠2-∠1).故选:B【点睛】本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.6、A【解析】【分析】由三角形的稳定性即可得出答案.【详解】一扇窗户打开后,用窗钩AB可将其固定,故选:A.【点睛】本题考查了三角形的稳定性,加上窗钩AB构成了△AOB,而三角形具有稳定性是解题的关键.7、C【解析】【分析】根据三角形的外角的性质直接求解即可,.【详解】解:∵在中,,,∴故选C【点睛】本题考查了三角形的外角的性质,掌握三角形的外角的性质是解题的关键.8、D【解析】【分析】过D作DF⊥AC于F,根据角平分线性质求出DF=DE=2,根据S△ADB+S△ADC=7和三角形面积公式求出即可.【详解】解:过D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,∴DE=DF=2,∵S△ABC=7,∴S△ADB+S△ADC=7,∴×AB×DE+×AC×DF=7,∴×4×2+×AC×2=7,解得:AC=3.故选D .【点睛】本题考查了角平分线的性质,三角形面积公式的应用,能正确作出辅助线是解此题的关键,注意:角平分线上的点到角两边的距离相等.9、B【解析】【分析】根据两直线相交对顶角相等、三角形角的外角性质即可确定答案.【详解】解:选项A、∵∠1与∠2互为对顶角,∴∠1=∠2,故选项A不符合题意;选项B、∵∠1=∠B+∠C,∴∠1>∠B,故选项B符合题意;选项C、∵∠2=∠D+∠A,∴∠2>∠D,故选项C不符合题意;选项D、∵,,∴,故选项D不符合题意;故选:B.【点睛】本题主要考查了对顶角的性质、平行线的性质和三角形内角和、外角的性质,能熟记对顶角的性质是解此题的关键.10、B【解析】【分析】直接根据三角形中线定义解答即可.【详解】解:∵是的中线,,∴BM= ,故选:B.【点睛】本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.二、填空题1、30【解析】【分析】根据三角形的面积公式求出△ACD的面积,利用三角形中线的性质即可求解.【详解】解:∵∠C=90°,CD=5cm,AC=12cm,∴△ACD的面积为(cm2),∵AD是BC边上的中线,∴△ACD的面积=△ABD的面积为(cm2),故答案为:30.【点睛】本题考查了三角形的面积和三角形中线的性质,关键是根据三角形的中线把三角形分成面积相等的两部分解答.2、6【解析】【分析】中线将三角形分成两个面积相等的三角形,可知,计算求解即可.【详解】解:由题意知∴∵∴故答案为:6.【点睛】本题考查了三角形的中线.解题的关键在于理解中线将三角形分成两个面积相等的三角形.3、15【解析】【分析】连接DF,根据AE=ED,BD=3DC,可得 ,, ,,然后设△AEF的面积为x,△BDE的面积为y,则,,,,再由△ABC的面积等于35,即可求解.【详解】解:如图,连接DF, ∵AE=ED,∴ ,,∵BD=3DC,∴ ,设△AEF的面积为x,△BDE的面积为y,则,,,,∵△ABC的面积等于35,∴ ,解得: .故答案为:15【点睛】本题主要考查了与三角形中线有关的面积问题,根据题意得到 ,, ,是解题的关键.4、在三角形中,两边之和大于第三边【解析】【分析】根据三角形两边之和大于第三边进行求解即可.【详解】解:∵点A、B在直线l上,点C是直线l外一点,∴A、B、C可以构成三角形,∴由三角形三边的关系:在三角形中,两边之和大于第三边可以得到:CA+CB>AB,故答案为:在三角形中,两边之和大于第三边.【点睛】本题主要考查了三角形三边的关系,熟知三角形中两边之和大于第三边是解题的关键.5、7【解析】【分析】由题意根据三角形的三边关系即可求得第三边的范围,从而由不等边三角形和奇数的定义确定第三边的长度.【详解】解:设第三边长是c,则9﹣4<c<9+4,即5<c<13,又∵第三边的长是奇数,不等边三角形的最长边为9,最短边为4,∴c=7.故答案为:7.【点睛】本题考查三角形的三边关系,注意掌握已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.三、解答题1、 (1)34°(2)41°【解析】【分析】(1)根据三角形内角和可得的度数;(2)先根据三角形外角性质计算出,再根据角平分线定义得到,接着再利用三角形外角性质得到.(1)解:在中,,,;(2)解:在中,,,平分,,.【点睛】本题考查角形内角和定理,解题的关键是掌握三角形内角和是,合理使用三角形外角性质计算角度.2、(1)①两直线平行,同位角相等;等量代换.②同位角相等,两直线平行.(2)84°;90°;【解析】【分析】(1)根据平行线的判定与性质逐一求解可得;(2)根据入射角等于反射角得出∠1=∠4,∠5=∠7,求出∠6,根据平行线性质即可求出∠2,求出∠5,根据三角形内角和求出∠3即可.【详解】解:(1)①由条件可知:∠1=∠3,依据是:两直线平行,同位角相等;∠2=∠4,依据是:等量代换;②反射光线BC与EF平行,依据是:同位角相等,两直线平行;故答案为:①两直线平行,同位角相等;等量代换.②同位角相等,两直线平行.(2)如图,∵∠1=42°,∴∠4=∠1=42°,∴∠6=180°42°42°=96°,∵m∥n,∴∠2+∠6=180°,∴∠2=84°,∴∠5=∠7=,∴∠3=180°48°42°=90°.故答案为:84°;90°;【点睛】本题考查了平行线的性质和判定,三角形的内角和定理的应用,熟练掌握平行线的判定与性质是解题的关键.3、∠B=50°;∠ACD=90°.【解析】【分析】由DF⊥AB,在Rt△BDF中可求得∠B;再由∠ACD=∠A+∠B可求得结论.【详解】解:∵DF⊥AB,∴∠BFD=90°,∴∠B+∠D=90°,∵∠D=40°,∴∠B=90°-∠D=90°-40°=50°;∴∠ACD=∠A+∠B=40°+50°=90°.【点睛】本题主要考查了三角形内角和定理及外角的性质,掌握三角形内角和为180°是解题的关键.4、(1)见解析;(2)见解析.【解析】【分析】(1)作∠BAC的平分线交BD于点O,作射线CO交AB于E,线段CE即为所求;(2)作△ABC的∠ABC的外角的平分线交AD与D,作射线CD,射线CD即为所求.【详解】(1)如图1,线段CE为所求; (2)如图2,线段CD为所求. 【点睛】本题主要考查了基本作图、三角形的外角、三角形的角平分线等知识点,理解三角形的内角平分线交于一点成为解答本题的关键.5、150°【解析】【分析】求∠BED的度数,应先求出∠ABC的度数,根据三角形的外角的性质可得,∠ABD=∠BDC﹣∠A=60°﹣45°=15°.再根据角平分线的定义可得,∠ABC=2∠ABD=2×15°=30°,根据两直线平行,同旁内角互补得∠BED的度数.【详解】解:∵∠BDC是△ABD的外角,∴∠ABD=∠BDC﹣∠A=60°﹣45°=15°.∵BD是△ABC的角平分线,∴∠DBC=∠ABD=15°,∴∠ABC=30°,∵DE∥BC,∴∠BED=180°﹣∠ABC=180°﹣30°=150°.【点睛】本题考查三角形外角的性质及角平分线的定义和平行线的性质,解答的关键是沟通外角和内角的关系.
相关试卷
这是一份冀教版七年级下册第九章 三角形综合与测试课时练习,共22页。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课时练习,共25页。试卷主要包含了如图,在中,,,则外角的度数是,如图,图形中的的值是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试随堂练习题,共25页。试卷主要包含了如图,直线l1等内容,欢迎下载使用。