![2022年最新精品解析冀教版七年级数学下册第九章 三角形重点解析试题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12766893/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版七年级数学下册第九章 三角形重点解析试题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12766893/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版七年级数学下册第九章 三角形重点解析试题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12766893/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020-2021学年第九章 三角形综合与测试课时训练
展开
这是一份2020-2021学年第九章 三角形综合与测试课时训练,共19页。试卷主要包含了下列图形中,不具有稳定性的是等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,不具有稳定性的是( )A.等腰三角形 B.平行四边形 C.锐角三角形 D.等边三角形2、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.证法1:如图,∵∠A=70°,∠B=63°,且∠ACD=133°(量角器测量所得)又∵133°=70°+63°(计算所得)∴∠ACD=∠A+∠B(等量代换).证法2:如图,∵∠A+∠B+∠ACB=180°(三角形内角和定理),又∵∠ACD+∠ACB=180°(平角定义),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).∴∠ACD=∠A+∠B(等式性质).下列说法正确的是( )A.证法1用特殊到一般法证明了该定理B.证法1只要测量够100个三角形进行验证,就能证明该定理C.证法2还需证明其他形状的三角形,该定理的证明才完整D.证法2用严谨的推理证明了该定理3、如图,直线l1、l2分别与△ABC的两边AB、BC相交,且l1∥l2,若∠B=35°,∠1=105°,则∠2的度数为( )A.45° B.50° C.40° D.60°4、如图,在△ABC中,AD是△ABC的中线,△ABD的面积为3,则△ABC的面积为( )A.8 B.7 C.6 D.55、下列图形中,不具有稳定性的是( )A. B.C. D.6、在△ABC中,∠A=∠B=∠C,则∠C=( )A.70° B.80° C.100° D.120°7、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于( )A.180° B.210° C.360° D.270°8、一把直尺与一块三角板如图放置,若,则( )A.120° B.130° C.140° D.150°9、若一个三角形的两条边的长为5和7,那么第三边的长可能是( )A.2 B.10 C.12 D.1310、三根小木棒摆成一个三角形,其中两根木棒的长度分别是和,那么第三根小木棒的长度不可能是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,一把直尺的一边缘经过直角三角形的直角顶点,交斜边于点;直尺的另一边缘分别交、于点、,若,,则___________度.2、如图,AE是△ABC的中线,BF是△ABE的中线,若△ABC的面积是20cm2,则S△ABF=_____cm2.3、在△ABC中,已知∠B是∠A的2倍,∠C比∠A大20°,则∠A=_____________.4、一个三角形的两边长分别为2和5,则第三边的长度可取的整数值为_________(写出一个即可).5、一个三角形的其中两个内角为,,则这个第三个内角的度数为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.2、如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,若∠BAC=50°,∠ABC=60°.求∠DAC和∠BOA的度数.3、如图,中,BE为AC边上的高,CD平分,CD、BE相交于点F.若,,求的度数.4、上小学时,我们已学过三角形三个内角的和为180°.定义:如果一个三角形的两个内角与满足.那么我们称这样的三角形为“准互余三角形”.(1)若是“准互余三角形”,,,则______;(2)若是直角三角形,.①如图,若AD是的平分线,请你判断是否为“准互余三角形”?并说明理由.②点E是边BC上一点,是“准互余三角形”,若,则______.5、如图,∠B=45°,∠A+15°=∠1,∠ACD=60°.求证:AB∥CD. -参考答案-一、单选题1、B【解析】【分析】根据三角形具有稳定性,四边形不具有稳定性即可作出选择.【详解】解:平行四边形属于四边形,不具有稳定性,而三角形具有稳定性,故A符合题意;故选:B.【点睛】本题考查了多边形和三角形的性质,解题的关键是记住三角形具有稳定性,四边形不具有稳定性.2、D【解析】【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.3、C【解析】【分析】根据三角形内角和定理球场∠3的度数,利用平行线的性质求出答案.【详解】解:∵∠B=35°,∠1=105°,∴∠3=180-∠1-∠B=,∵l1∥l2,∴∠2=∠3=,故选:C..【点睛】此题考查三角形内角和定理,两直线平行内错角相等的性质,熟记三角形内角和等于180度及平行线的性质并熟练解决问题是解题的关键.4、C【解析】【分析】根据三角形的中线将三角形的面积分成相等的两部分即可求解.【详解】解:∵△ABC中,AD是BC边上的中线,△ABD的面积为3,∴△ABC的面积=3×2=6.故选:C.【点睛】考查了三角形的面积,关键是熟悉三角形的中线将三角形的面积分成相等的两部分的知识点.5、B【解析】【分析】由三角形的稳定性的性质判定即可.【详解】A选项为三角形,故具有稳定性,不符合题意,故错误;B选项为四边形,非三角形结构,故不具有稳定性,符合题意,故正确;C选项为三个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误;D选项为两个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误.故选B.【点睛】本题考查了三角形的稳定性,如果三角形的三条边固定,那么三角形的形状和大小就完全确定了,三角形的这个特征,叫做三角形的稳定性注意①要看图形是否具有稳定性,关键在于它的结构是不是三角形结构②除了三角形外,其他图形都不具备稳定性,因此在生产建设中,三角形的应用非常广泛.6、D【解析】【分析】根据三角形的内角和,①,进而根据已知条件,将代入①即可求得【详解】解:∵在△ABC中,,∠A=∠B=∠C,∴解得故选D【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.7、B【解析】【分析】已知,得到,根据外角性质,得到,,再将两式相加,等量代换,即可得解;【详解】解:如图所示,∵,∴,∵,,∴,∵,,∴,∵,,∴;故选D.【点睛】本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.8、B【解析】【分析】由BC∥ED,得到∠2=∠CBD,由三角形外角的性质得到∠CBD=∠1+∠A=130°,由此即可得到答案.【详解】解:如图所示,由题意得:∠A=90°,BC∥EF,∴∠2=∠CBD,又∵∠CBD=∠1+∠A=130°,∴∠2=130°,故选B.【点睛】本题主要考查了三角形外角的性质,平行线的性质,熟知相关知识是解题的关键.9、B【解析】【分析】根据在三角形中三边关系可求第三边长的范围,再选出答案.【详解】解:设第三边长为x,则由三角形三边关系定理得7-5<x<7+5,即2<x<12.只有选项B符合题意,故选:B.【点睛】本题考查了三角形三边关系,掌握三角形的三边关系是解题的关键.三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.10、D【解析】【分析】设第三根木棒长为x厘米,根据三角形的三边关系可得8﹣5<x<8+5,确定x的范围即可得到答案.【详解】解:设第三根木棒长为x厘米,由题意得:8﹣5<x<8+5,即3<x<13,故选:D.【点睛】此题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.二、填空题1、20【解析】【分析】利用平行线的性质求出∠1,再利用三角形外角的性质求出∠DCB即可.【详解】解:∵EF∥CD,∴,∵∠1是△DCB的外角,∴∠1-∠B=50°-30°=20º,故答案为:20.【点睛】本题考查了平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识.2、5【解析】【分析】利用三角形的中线把三角形分成面积相等的两个三角形进行解答.【详解】解:∵AE是△ABC的中线,BF是△ABE的中线,∴S△ABF=S△ABC=×20=5cm2.故答案为:5.【点睛】本题考查了三角形的面积,能够利用三角形的中线把三角形分成面积相等的两个三角形的性质求解是解题的关键.3、40°##40度【解析】【分析】根据已知得出∠B=2∠A,∠C=∠A+20°,代入∠A+∠B+∠C=180°得出方程∠A+2∠A+∠A+20°=180°,求出即可.【详解】解:∵∠B是∠A的2倍,∠C比∠A大20°,∴∠B=2∠A,∠C=∠A+20°,∵∠A+∠B+∠C=180°,∴∠A+2∠A+∠A+20°=180°,∴∠A=40°,故答案为:40°.【点睛】本题考查了三角形内角和定理的应用,注意:三角形的内角和等于180°,用了方程思想.4、4,5,6(写出一个即可)【解析】【分析】由构成三角形三边成立的条件可得第三条边的取值范围.【详解】设第三条长为x∵2+5=7,5-2=3∴3<x<7.故第三条边的整数值有4、5、6.故答案为:4,5,6(写出一个即可)【点睛】本题考查了构成三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边,关键为“任意”两边均满足此关系.5、60°##60度【解析】【分析】依题意,利用三角形内角和为:,即可;【详解】由题得:一个三角形的内角和为:;又已知两个其中的内角为:,;∴ 第三个角为:;故填:【点睛】本题主要考查三角形的内角和,关键在于熟练并运用基本的计算;三、解答题1、∠AFB=40°.【解析】【分析】由题意易得∠ADC=90°,∠ACB=80°,然后可得,进而根据三角形外角的性质可求解.【详解】解:∵AD⊥BE,∴∠ADC=90°,∵∠DAC=10°,∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,∵AE是∠MAC的平分线,BF平分∠ABC,∴,又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB,∴∠AFB=∠MAE﹣∠ABF=.【点睛】本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.2、∠DAC=20°,∠BOA=125°【解析】【分析】先求出∠C=70°,因为AD是高,所以∠ADC=90°,又因为∠C=70°,所以∠DAC度数可求;因为∠BAC=50°,∠C=70°,所以∠BAO=25°,∠ABC=60°,BF是∠ABC的角平分线,则∠ABO=30°,故∠BOA的度数可求.【详解】解:∵∠BAC=50°,∠ABC=60°∴∠C=180°-∠BAC-∠ABC=70°∵AD⊥BC∴∠ADC=90°∵∠C=70°∴∠DAC=180°−90°−70°=20°;∵∠BAC=50°,∠C=70°∴∠BAO=25°,∠ABC=60°∵BF是∠ABC的角平分线∴∠ABO=30°∴∠BOA=180°−∠BAO−∠ABO=180°−25°−30°=125°.【点睛】本题考查了同学们利用角平分线的性质解决问题的能力,有利于培养同学们的发散思维能力.3、.【解析】【分析】先根据三角形的内角和定理可得,再根据角平分线的定义可得,然后根据垂直的定义可得,最后根据三角形的外角性质即可得.【详解】解:在中,,,,平分,,为边上的高,,.【点睛】本题考查了三角形的内角和定理、角平分线的定义、三角形的外角性质等知识点,熟练掌握三角形的内角和定理是解题关键.4、(1)15°;(2)①是,见解析;②24°或33°【解析】【分析】(1)根据是“准互余三角形”,得出,从中求出∠B即可;(2)①是“准互余三角形”,理由如下:根据AD平分,得出,根据三角形内角和 ,得出即可;②点E是边BC上一点,是“唯互余三角形”,分两种情况,当2∠BAE+∠ABC=90°时,先求出,可得∠EAC=33°,当∠BAE+2∠ABC=90°时,可求,根据∠EAC=90°-∠BAE-∠ABC=24°即可.【详解】(1)∵是“准互余三角形”,,∴,∴,故答案为:15°(2)①解:是“准互余三角形”,理由如下:∵AD平分,∴,∵,,∴,∴,∴是“准互余三角形”.②点E是边BC上一点,是“准互余三角形”,∴当2∠BAE+∠ABC=90°时,∴,∴∠EAC=90°-∠BAE-∠ABC=33°,∴当∠BAE+2∠ABC=90°时,∴,∴∠EAC=90°-∠BAE-∠ABC=90°-42°-24°=24°.故答案为33°或24°.【点睛】本题考查新定义“准互余三角形”,角平分线定义,角的倍分,掌握如果一个三角形的两个内角与满足或.那么我们称这样的三角形为“准互余三角形”是解题关键.5、见解析【解析】【分析】由三角形内角和定理和已知条件求出∠A=60°,得出∠ACD=∠A,即可得出AB∥CD.【详解】证明:∵∠A+∠B+∠1=180°,∠A+15°=∠1,∴∠A+45°+∠A+15°=180°,解得:∠A=60°,∵∠ACD=60°,∴∠ACD=∠A,∴AB∥CD.【点睛】本题考查了平行线的判定方法、三角形内角和定理;熟练掌握平行线的判定方法,由三角形内角和定理求出∠A是解决问题的关键.
相关试卷
这是一份数学七年级下册第九章 三角形综合与测试综合训练题,共22页。试卷主要包含了下列各图中,有△ABC的高的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试单元测试一课一练,共21页。试卷主要包含了如图,,如图,,,,则的度数是,如图,已知,,,则的度数为等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试练习,共23页。试卷主要包含了如图,在ABC中,点D,下列图形中,不具有稳定性的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)