数学七年级下册第九章 三角形综合与测试课时训练
展开
这是一份数学七年级下册第九章 三角形综合与测试课时训练,共19页。
冀教版七年级数学下册第九章 三角形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,一副三角板叠放在一起,则图中等于( ) A.105° B.115° C.120° D.135°2、如图,已知为的外角,,,那么的度数是( )A.30° B.40° C.50° D.60°3、如图,图形中的的值是( )A.50 B.60 C.70 D.804、利用直角三角板,作的高,下列作法正确的是( )A. B.C. D.5、下图中能体现∠1一定大于∠2的是( )A. B.C. D.6、在△ABC中,∠A=∠B=∠C,则∠C=( )A.70° B.80° C.100° D.120°7、如图,钝角中,为钝角,为边上的高,为的平分线,则与、之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )A. B.C. D.8、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?( )A.0根 B.1根 C.2根 D.3根9、如图,在中,,,将沿直线翻折,点落在点的位置,则的度数是( ) A.30° B.45° C.60° D.75°10、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )A.105° B.120° C.135° D.150°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个三角形的两边分别是3和7,如果第三边长为整数,那么第三边可取的最大整数是___.2、一个三角形的两边长分别为2和5,则第三边的长度可取的整数值为_________(写出一个即可).3、如图,已知,,,则______°.4、如图,在△ABC中,点D在CB的延长线上,∠A=60°,∠ABD=110°,则∠C等于___.5、如图,AE是△ABC的中线,BF是△ABE的中线,若△ABC的面积是20cm2,则S△ABF=_____cm2.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,∠BAC=40°,∠B=75°,AD是△ABC的角平分线,求∠ADB的度数.2、如图所示,四边形ABCD中,ADC的角平分线DE与BCD的角平分线CA相交于E点,已知:ACB=32°,CDE=58°.(1)求DEC的度数;(2)试说明直线3、如图,在△ABC中,∠ABC的角平分线交AC千点E,过点E作DF∥BC,交AB于点D,且EC平分∠BEF.(1)若∠ADE=50°,求∠BEC的度数;(2)若∠ADE=α,则∠AED= (含α的代数式表示).4、如图,AD是△ABC的高,AE平分∠BAC.(1)若∠B=62°,∠C=46°,求∠DAE的度数;(2)若,求∠DAE的度数.5、如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°,求∠BED的度数. -参考答案-一、单选题1、A【解析】【分析】根据直角三角板各角的度数和三角形外角性质求解即可.【详解】解:如图,∠C=90°,∠DAE=45°,∠BAC=60°,∴∠CAO=∠BAC-∠DAE=60°-45°=15°,∴=∠C+∠CAO=90°+15°=105°,故选:A.【点睛】本题考查三角板中的度数计算、三角形的外角性质,熟知三角板各角度数,掌握三角形的外角性质是解答的关键.2、B【解析】【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.3、B【解析】【分析】根据三角形外角的性质:三角形一个外角的度数等于与其不相邻的两个内角的度数和进行求解即可.【详解】解:由题意得: ∴,∴,故选B.【点睛】本题主要考查了三角形外角的性质,解一元一次方程,熟知三角形外角的性质是解题的关键.4、D【解析】【分析】由题意直接根据高线的定义进行分析判断即可得出结论.【详解】解:A、B、C均不是高线.故选:D.【点睛】本题考查的是作图-基本作图,熟练掌握三角形高线的定义即过一个顶点作垂直于它对边所在直线的线段,叫三角形的高线是解答此题的关键.5、C【解析】【分析】由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.【详解】解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;B、如图, 若两线平行,则∠3=∠2,则 若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C.【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.6、D【解析】【分析】根据三角形的内角和,①,进而根据已知条件,将代入①即可求得【详解】解:∵在△ABC中,,∠A=∠B=∠C,∴解得故选D【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.7、B【解析】【分析】根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.【详解】解:由三角形内角和知∠BAC=180°-∠2-∠1,∵AE为∠BAC的平分线,∴∠BAE=∠BAC=(180°-∠2-∠1).∵AD为BC边上的高,∴∠ADC=90°=∠DAB+∠ABD.又∵∠ABD=180°-∠2,∴∠DAB=90°-(180°-∠2)=∠2-90°,∴∠EAD=∠DAB+∠BAE=∠2-90°+(180°-∠2-∠1)=(∠2-∠1).故选:B【点睛】本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.8、B【解析】【分析】根据三角形的稳定性即可得.【详解】解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:或故选:B.【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.9、C【解析】【分析】设交于点,是射线上的一点,设,根据三角形的外角的性质可得,进而根据平角的定义即可求得,即可求得.【详解】如图,设交于点,是射线上的一点,折叠,设即故选C【点睛】本题考查了折叠的性质,三角形的外角的性质,掌握三角形外角的性质是解题的关键.10、B【解析】【分析】由题意易得,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:,∴;故选B.【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.二、填空题1、9【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得第三边长的最大值.【详解】解:设第三边为a,根据三角形的三边关系,得:7﹣3<a<3+7,即4<a<10,∵a为整数,∴a的最大值为9.故答案为:9.【点睛】此题考查了三角形的三边关系.注意第三边是整数的已知条件.2、4,5,6(写出一个即可)【解析】【分析】由构成三角形三边成立的条件可得第三条边的取值范围.【详解】设第三条长为x∵2+5=7,5-2=3∴3<x<7.故第三条边的整数值有4、5、6.故答案为:4,5,6(写出一个即可)【点睛】本题考查了构成三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边,关键为“任意”两边均满足此关系.3、594、50°【解析】【分析】首先根据平角的概念求出的度数,然后根据三角形内角和定理即可求出的度数.【详解】解:∵∠ABD=110°,∴,∴故答案为:50°.【点睛】此题考查了平角的概念,三角形三角形内角和定理,解题的关键是熟练掌握平角的概念,三角形三角形内角和定理.5、5【解析】【分析】利用三角形的中线把三角形分成面积相等的两个三角形进行解答.【详解】解:∵AE是△ABC的中线,BF是△ABE的中线,∴S△ABF=S△ABC=×20=5cm2.故答案为:5.【点睛】本题考查了三角形的面积,能够利用三角形的中线把三角形分成面积相等的两个三角形的性质求解是解题的关键.三、解答题1、85°【解析】【分析】根据角平分线定义求出,根据三角形内角和定理得出,代入求出即可.【详解】解:平分,,,,.【点睛】本题考查了三角形内角和定理,角平分线定义的应用,解题的关键是注意:三角形的内角和等于.2、(1)90°;(2)见解析【解析】【分析】(1)根据三角形内角和定理即可求解;(2)首先求得∠ADC的度数和∠DCB的度数,根据同旁内角互补,两直线平行即可证得.【详解】解:(1)∵AC是BCD的平分线∴ ∵ ∴∠DEC=180°-∠ACD-∠CDE=180°-32°-58°=90°;(2)∵DE平分∠ADC,CA平分∠BCD∴∠ADC=2∠CDE=116°,∠BCD=2∠ACD=64°∵∠ADC+∠BCD=116°+64°=180°∴【点睛】本题主要考查了角平分线,平行线的判定以及三角形内角和定理,熟练掌握相关性质和定理是解答本题的关键.3、(1)77.5°;(2)90°﹣α;【解析】【分析】(1)根据平行线的性质得到∠ABC=∠ADE=50°,根据角平分线的定义∠EBC=25°,根据角平分线的定义和平行线的性质可得∠BEC=∠C,根据三角形的内角和定理即可得到结论;(2)根据角平分线的定义和平行线的性质以及三角形的内角和定理即可得到结论.【详解】解:(1)∵DF∥BC,∴∠ADE=∠ABC=50°,∠CEF=∠C,∵BE平分∠ABC,∴∠DEB=∠EBC=25°,∵EC平分∠BEF,∴∠CEF=∠BEC=∠C,∵∠BEC+∠C+∠EBC=180°,∴∠BEC=77.5°;(2)∵DF∥BC,∴∠ADE=∠ABC=α,∵BE平分∠ABC,∴∠DEB=∠EBC=α,∵EC平分∠BEF,∴∠AED=∠CEF=(180°﹣α)=90°﹣α.故答案为:90°﹣α.【点睛】本题考查平行的性质与判定,角平分线的性质,以及三角形的内角和定理,熟练应用平行的性质与判定结合角平分线的性质是解决本题的关键.4、(1)8°;(2)15°【解析】【分析】(1)根据 三角形内角和定理求出∠BAC的度数,利用角平分线的性质求出∠CAE的度数,根据垂直的定义求出答案;(2)根据角平分线的性质推出∠CAE=∠BAE,利用垂直得到∠BAD+∠DAE=∠CAD-∠DAE,推出2∠DAE=,计算得到答案.【详解】解:(1)∵∠B=62°,∠C=46°,∴∠BAC=180°-∠B-∠C=72°,∵AE平分∠BAC,∴∠CAE=,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°-∠C=44°,∴∠DAE=∠DAC-∠CAE=8°;(2)∵AE平分∠BAC,∴∠CAE=∠BAE,∵AD⊥BC,∴∠ADC=90°,∴∠BAD=90°-∠B,∠CAD=90°-∠C,∴∠BAD+∠DAE=∠CAD-∠DAE,∴90°-∠B+∠DAE =90°-∠C-∠DAE,∴2∠DAE=,∴∠DAE=15°.【点睛】此题考查了三角形角平分线的性质,三角形内角和定理,垂直的定义,熟练掌握三角形的知识是解题的关键.5、150°【解析】【分析】求∠BED的度数,应先求出∠ABC的度数,根据三角形的外角的性质可得,∠ABD=∠BDC﹣∠A=60°﹣45°=15°.再根据角平分线的定义可得,∠ABC=2∠ABD=2×15°=30°,根据两直线平行,同旁内角互补得∠BED的度数.【详解】解:∵∠BDC是△ABD的外角,∴∠ABD=∠BDC﹣∠A=60°﹣45°=15°.∵BD是△ABC的角平分线,∴∠DBC=∠ABD=15°,∴∠ABC=30°,∵DE∥BC,∴∠BED=180°﹣∠ABC=180°﹣30°=150°.【点睛】本题考查三角形外角的性质及角平分线的定义和平行线的性质,解答的关键是沟通外角和内角的关系.
相关试卷
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试同步练习题,共22页。试卷主要包含了如图,在中,,,则外角的度数是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试测试题,共23页。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试练习,共20页。试卷主要包含了如图,,,则的度数是,如图,在中,若点使得,则是的等内容,欢迎下载使用。