搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷冀教版七年级数学下册第九章 三角形专题训练试卷(含答案详解)

    精品试卷冀教版七年级数学下册第九章 三角形专题训练试卷(含答案详解)第1页
    精品试卷冀教版七年级数学下册第九章 三角形专题训练试卷(含答案详解)第2页
    精品试卷冀教版七年级数学下册第九章 三角形专题训练试卷(含答案详解)第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第九章 三角形综合与测试课后复习题

    展开

    这是一份2020-2021学年第九章 三角形综合与测试课后复习题,共22页。试卷主要包含了如图,在ABC中,点D等内容,欢迎下载使用。
    冀教版七年级数学下册第九章 三角形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,若点使得,则的(       A.高 B.中线 C.角平分线 D.中垂线2、在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,则∠BOC等于(       A.65° B.80° C.115° D.50°3、以下列各组线段为边,能组成三角形的是(       A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm4、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是(     A.两点确定一条直线B.两点之间,线段最短C.三角形具有稳定性D.三角形的任意两边之和大于第三边5、将一张正方形纸片ABCD按如图所示的方式折叠,CECF为折痕,点BD折叠后的对应点分别为B'、D',若∠ECF=21°,则∠B'CD'的度数为(  )A.35° B.42° C.45° D.48°6、下列四个图形中,线段BE是△ABC的高的是(  )A. B.C. D.7、如图,在ABC中,点DE分别是ACAB的中点,且,则       A.12 B.6 C.3 D.28、如图所示,一副三角板叠放在一起,则图中等于(       A.105° B.115° C.120° D.135°9、在ABC中,∠A=∠BC,则∠C=(  )A.70° B.80° C.100° D.120°10、已知的三边长分别为abc,则abc的值可能分别是(       A.1,2,3 B.3,4,7C.2,3,4 D.4,5,10第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,,点D是边上一点,将沿直线翻折,使点B落在点E处,如果,那么等于______度.2、已知,在△ABC中,∠B=48°,∠C=68°,ADBC边上的高,AE平分∠BAC,则∠DAE的度数为____.3、在△ABC中,三边为,如果,那么的取值范围是_____.4、如图,为△ABC的中线,为△的中线,为△的中线,……按此规律,为△的中线.若△ABC的面积为8,则△的面积为_______________.5、若等腰三角形两底角平分线相交所形成的钝角是128°,则这个等腰三角形的顶角的度数是_____.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,点BC在线段AD的异侧,点EF分别是线段ABCD上的点,∠AEG=∠AGE,∠C=∠DGC(1)求证:AB//CD(2)若∠AGE+∠AHF=180°,求证:∠B=∠C(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.2、如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:ABCD.3、如图,BD是△ABC的角平分线,DEBC,交AB于点E,∠A=45°,∠BDC=60°,求∠BED的度数.4、已知:如图,△ABC中,∠BAC=80°,ADBCDAE平分∠DAC,∠B=60°,求∠AEC的度数.5、如图,点CB分别在直线MNPQ上,点A在直线MNPQ之间,MNPQ(1)如图1,求证:∠A=∠MCA+∠PBA(2)如图2,过点CCDAB,点EPQ上,∠ECM=∠ACD,求证:∠A=∠ECN(3)在(2)的条件下,如图3,过点BPQ的垂线交CE于点F,∠ABF的平分线交AC于点G,若∠DCE=∠ACE,∠CFBCGB,求∠A的度数. -参考答案-一、单选题1、B【解析】【分析】根据三角形的中线定义即可作答.【详解】解:∵BD=DCAD是△ABC的中线,故选:B.【点睛】本题考查了三角形的中线概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.2、C【解析】【分析】根据题意画出图形,求出∠ABC+∠ACB =130°,根据角平分线的定义得到∠CBD=ABC,∠ECB=ACB,再根据三角形内角和定理和角的代换即可求解.【详解】解:如图,∵∠A=50°,∴∠ABC+∠ACB=180°-∠A=130°,BDCE分别是∠ABC、∠ACB的平分线,∴∠CBD=ABC,∠ECB=ACB∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- (∠ABC+∠ACB)=180°- ×130°=115°.故选:C【点睛】本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.3、A【解析】【分析】三角形的任意两条之和大于第三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.【详解】解: 所以以3cm,4cm,5cm为边能构成三角形,故A符合题意; 所以以3cm,3cm,6cm为边不能构成三角形,故B不符合题意; 所以以5cm,10cm,4cm为边不能构成三角形,故C不符合题意; 所以以1cm,2cm,3cm为边不能构成三角形,故D不符合题意;故选A【点睛】本题考查的是三角形的三边之间的关系,掌握“利用三角形三边之间的关系判定三条线段能否组成三角形”是解本题的关键.4、C【解析】【分析】根据三角形具有稳定性进行求解即可.【详解】解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,故选C.【点睛】本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.5、D【解析】【分析】可以设∠ECB'=α,∠FCD'=β,根据折叠可得∠DCE=∠D'CE,∠BCF=∠B'CF,进而可求解.【详解】解:设∠ECB'=α,∠FCD'=β根据折叠可知:DCE=∠D'CE,∠BCF=∠B'CF∵∠ECF=21°,∴∠D'CE=21°+β,∠B'CF=21°+α∵四边形ABCD是正方形,∴∠BCD=90°,∴∠D'CE+∠ECF+∠B'CF=90°∴21°+β+21°+21°+α=90°,αβ=27°,∴∠B'CD'=∠ECB'+∠ECF+∠FCD'=α+21°+β=21°+27°=48°则∠B'CD'的度数为48°.故选:D【点睛】本题考查了正方形与折叠问题,解决本题的关键是熟练运用折叠的性质.6、D【解析】【分析】根据三角形高的画法知,过点边上的高,垂足为,其中线段的高,再结合图形进行判断.【详解】解:线段的高的图是选项故选:D.【点睛】本题主要考查了三角形的高,解题的关键是掌握三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.7、C【解析】【分析】由于三角形的中线将三角形分成面积相等的两部分,则SABDSABC=6,然后利用SBDESABD求解.【详解】解:∵点DAC的中点,SABDSABC×12=6,∵点EAB的中点,SBDESABD×6=3.故选:C.【点睛】本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键. 三角形的中线把三角形分成面积相同的两部分.8、A【解析】【分析】根据直角三角板各角的度数和三角形外角性质求解即可.【详解】解:如图,∠C=90°,∠DAE=45°,∠BAC=60°,∴∠CAO=∠BAC-∠DAE=60°-45°=15°,=∠C+∠CAO=90°+15°=105°,故选:A.【点睛】本题考查三角板中的度数计算、三角形的外角性质,熟知三角板各角度数,掌握三角形的外角性质是解答的关键.9、D【解析】【分析】根据三角形的内角和,①,进而根据已知条件,将代入①即可求得【详解】解:∵在ABC中,,∠A=∠BC解得故选D【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.10、C【解析】【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.二、填空题1、【解析】【分析】先根据等腰三角形的性质和三角形内角和等于180°求出∠B=∠ACB=70°,由折叠可得∠BDC=∠EDC,由DE∥AC可得∠EDC=∠BCD,在等腰三角形BDC中求出∠BCD的度数,根据角度关系可求∠ACD的度数.【详解】解:如图,由折叠可知//故答案为:【点睛】本题考查了折叠问题,涉及到平行线的性质和等腰三角形的性质,熟练运用折叠的性质是解决本题的关键.2、10°##10度【解析】【分析】由三角形内角和求出的度数,然后利用角平分线的定义求出的度数,再根据ADBC求出的度数,利用即可求出的度数.【详解】解:如图,∵∠B=48°,∠C=68°AE平分∠BACADBC故答案为【点睛】本题主要考查三角形内角和定理和角平分线的定义,掌握三角形内角和定理和角平分线的定义是解题的关键.3、4<x<28【解析】【分析】根据三角形三边的关系:两边之和大于第三边,两边之差小于第三边解答即可;【详解】解:由题意得:解得:4<x<28.故答案为:4<x<28【点睛】本题考查了三角形三边的关系,熟练掌握三角形三边的关系是解题的关键.4、【解析】【分析】根据三角形的中线性质,可得△的面积=,△的面积=,……,进而即可得到答案.【详解】由题意得:△的面积=,△的面积=,……,△的面积==故答案是:【点睛】本题主要考查三角形的中线的性质,掌握三角形的中线把三角形的面积平分,是解题的关键.5、##76度【解析】【分析】先根据角平分线的定义、三角形的内角和定理求出等腰三角形两底角的度数和,再根据三角形内角和求出顶角的度数即可.【详解】解:∵∠BOC=128°,∴∠OBC+∠OCB=180°﹣∠BOC=180°﹣128°=52°,BO平分∠ABCCO平分∠ACB∴∠ABC+∠ACB=2(∠OBC+∠OCB)=104°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣104°=76°.故答案为:76°.【点睛】本题主要考查角平分线的定义和三角形内角和定理,牢记角平分线分得的两个角相等,三角形内角和是是解决本题的关键.三、解答题1、(1)见解析;(2)见解析;(3)108°【解析】【分析】(1)根据对顶角相等结合已知条件得出∠AEG=∠C,根据内错角相等两直线平行即可证得结论;(2)由∠AGE+∠AHF=180°等量代换得∠DGC+∠AHF=180°可判断EC//BF,两直线平行同位角相等得出∠B=∠AEG,结合(1)得出结论;(3)由(2)证得EC//BF,得∠BFC+∠C=180°,求得∠C的度数,由三角形内角和定理求得∠D的度数.【详解】证明:(1)∵∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC∴∠AEG=∠C     AB//CD(2)∵∠AGE=∠DGC,∠AGE+∠AHF=180°∴∠DGC+∠AHF=180°EC//BF   ∴∠B=∠AEG由(1)得∠AEG=∠C     ∴∠B=∠C(3)由(2)得EC//BF∴∠BFC+∠C=180°∵∠BFC=4∠C     ∴∠C=36°     ∴∠DGC=36°∵∠C+∠DGC+∠D=180°     ∴∠D=108°【点睛】此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键.2、见解析【解析】【分析】连接,再根据三角形的三边关系即可得出结论.【详解】连接当且仅当CD过圆心O时,取“=”号,【点睛】本题考查的是三角形的三边关系,解题的关键是熟知三角形任意两边之和大于第三边.3、150°【解析】【分析】求∠BED的度数,应先求出∠ABC的度数,根据三角形的外角的性质可得,∠ABD=∠BDC﹣∠A=60°﹣45°=15°.再根据角平分线的定义可得,∠ABC=2∠ABD=2×15°=30°,根据两直线平行,同旁内角互补得∠BED的度数.【详解】解:∵∠BDC是△ABD的外角,∴∠ABD=∠BDC﹣∠A=60°﹣45°=15°.BD是△ABC的角平分线,∴∠DBC=∠ABD=15°,∴∠ABC=30°,DEBC∴∠BED=180°﹣∠ABC=180°﹣30°=150°.【点睛】本题考查三角形外角的性质及角平分线的定义和平行线的性质,解答的关键是沟通外角和内角的关系.4、∠AEC=115°【解析】【分析】利用三角形的内角和定理求解 再利用三角形的高的含义求解 再结合角平分线的定义求解 再利用三角形的内角和定理可得答案.【详解】解:BAC=80°,∠B=60°, ADBC AE平分∠DAC 【点睛】本题考查的是三角形的高,角平分线的含义,三角形的内角和定理的应用,熟练的运用三角形的高与角平分线的定义结合三角形的内角和定理得到角与角之间的关系是解本题的关键.5、(1)见解析;(2)见解析;(3)72°.【解析】【分析】(1)过点A作平行线,证出三条直线互相平行,由平行得出与∠ACM和∠ABP相等的角即可得出结论;(2)由CDAB,可得同旁内角互补,再结合∠ECM与∠ECN的邻补角关系,可得结论;(3)延长CAPQ于点H,先证明∠MCA=∠ACE=∠ECD,∠ABP=∠NCD,再设∠MCA=∠ACE=∠ECD=x,由(1)可知∠CFB=∠FCN+∠FBQ,从而∠CFB=270-2x,列出方程解得x值,则不难求得答案.【详解】解:(1)证明:过点AADMNMNPQADMNADMNPQ∴∠MCA=∠DAC,∠PBA=∠DAB∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA即:∠A=∠MCA+∠PBA(2)∵CDAB∴∠A+∠ACD=180°,∵∠ECM+∠ECN=180°,又∠ECM=∠ACD∴∠A=∠ECN(3)如图,延长CAPQ于点H∵∠ECM=∠ACD,∠DCE=∠ACE∴∠MCA=∠ACE=∠ECDMNPQ∴∠MCA=∠AHB∵∠CAB=∠AHB+∠PBA,且由(2)知∠CAB=∠ECN∴∠ABP=∠NCD设∠MCA=∠ACE=∠ECD=x由(1)可知∠CFB=∠FCN+∠FBQ∴∠CFB=270-2x由(1)可知∠CGB=∠MCG+∠GBP∴∠CGB=135°−x∴270°−2x= (135°−x) ,解得:x=54°,∴∠AHB=54°,∴∠ABP=∠NCD=180°-54°×3=18°,∴∠CAB=54°+18°=72°.【点睛】本题考查了平行线的性质及一元一次方程在计算问题中的应用,三角形的内角和定理以及三角形的外角性质,理清题中的数量关系并正确列式是解题的关键. 

    相关试卷

    2020-2021学年第九章 三角形综合与测试同步达标检测题:

    这是一份2020-2021学年第九章 三角形综合与测试同步达标检测题,共20页。

    初中数学冀教版七年级下册第九章 三角形综合与测试课后测评:

    这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课后测评,共21页。试卷主要包含了若三角形的两边a,如图,在ABC中,点D,如图,图形中的的值是等内容,欢迎下载使用。

    2021学年第九章 三角形综合与测试课后练习题:

    这是一份2021学年第九章 三角形综合与测试课后练习题,共19页。试卷主要包含了下列图形中,不具有稳定性的是,已知△ABC的内角分别为∠A等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map