![2022年最新强化训练冀教版七年级数学下册第九章 三角形章节训练练习题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12766984/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练冀教版七年级数学下册第九章 三角形章节训练练习题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12766984/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练冀教版七年级数学下册第九章 三角形章节训练练习题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12766984/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
七年级下册第九章 三角形综合与测试练习
展开
这是一份七年级下册第九章 三角形综合与测试练习,共20页。试卷主要包含了三角形的外角和是等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列长度的三条线段能组成三角形的是( )A.1,6,6 B.2,3,5 C.3,4,8 D.5,6,112、下列所给的各组线段,能组成三角形的是:( )A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,133、如图,和相交于点O,则下列结论不正确的是( )A. B. C. D.4、如图,已知为的外角,,,那么的度数是( )A.30° B.40° C.50° D.60°5、下图中能体现∠1一定大于∠2的是( )A. B.C. D.6、如图,一扇窗户打开后,用窗钩AB可将其固定( )A.三角形的稳定性B.两点之间线段最短C.四边形的不稳定性D.三角形两边之和大于第三边7、以下列长度的各组线段为边,能组成三角形的是( )A.,, B.,,C.,, D.,,8、三角形的外角和是( )A.60° B.90° C.180° D.360°9、若一个三角形的两条边的长为5和7,那么第三边的长可能是( )A.2 B.10 C.12 D.1310、如果一个三角形的两边长都是6cm,则第三边的长不能是( )A.3cm B.6cm C.9cm D.13cm第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,______.2、如图,在△ABC中,∠C=90°,AD是BC边上的中线,交BC于点D,CD=5cm,AC=12cm,则△ABD的面积是__________cm2.3、已知三角形的三边分别为n,5,7,则n的范围是 _____.4、若△ABC的边AB、BC的长是方程组的解,设边AC的长为m,则m的取值范围是_____.5、一个三角形的其中两个内角为,,则这个第三个内角的度数为______.三、解答题(5小题,每小题10分,共计50分)1、如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.2、如图所示,在一副三角板ABC和三角板DEC中,,,∠B=30°,∠DEC=∠DCE=45°.(1)当AB∥DC时,如图①,的度数为 °;(2)当与重合时,如图②,判断与的位置关系并说明理由;(3)如图③,当= °时,AB∥EC;(4)当AB∥ED时,如图④、图⑤,分别求出的度数.3、如图,BD是的角平分线,BE是的AC边上的中线.(1)若的周长为13,,,求AB的长.(2)若,,求的度数.4、如图,AD是∠BAC的平分线,CE是△ADC边AD上的高,若∠BAC=80°,∠ECD=25°,求∠ACB的度数.5、如图1,我们把一副两个三角板如图摆放在一起,其中OA,OD在一条直线上,∠B=45°,∠C=30°,固定三角板ODC,将三角板OAB绕点O按顺时针方向旋转,记旋转角∠AOA'=α(0<α<180°).(1)在旋转过程中,当α为 度时,A'B'OC,当α为 度时,A'B'⊥CD;(2)如图2,将图1中的△OAB以点O为旋转中心旋转到△OA'B'的位置,求当α为多少度时,OB'平分∠COD;拓展应用:(3)当90°<α<120°时,连接A'D,利用图3探究∠B'A'D+∠B'OC+∠A'DC值的大小变化情况,并说明理由. -参考答案-一、单选题1、A【解析】【分析】根据构成三角形的条件逐项分析判断即可.三角形的任意两边之和大于第三边,任意两边之差小于第三边,根据原理分别计算两条较短边的和与最长边比较,再逐一分析即可.【详解】解:A. 1+6>6,能组成三角形,故该选项正确,符合题意;B. 2+3=5,不能组成三角形,故该选项不正确,不符合题意; C. 3+4<8,不能组成三角形,故该选项不正确,不符合题意; D. 5+6=11,不能组成三角形,故该选项不正确,不符合题意;故选A【点睛】本题考查了判断构成三角形的条件,解题的关键是掌握构成三角形的条件.2、D【解析】【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A不符合题意;∵5+7=12,∴B不符合题意;∵5+5=10<11,∴C不符合题意;∵5+12=17>13,∴D符合题意;故选D.【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.3、B【解析】【分析】根据两直线相交对顶角相等、三角形角的外角性质即可确定答案.【详解】解:选项A、∵∠1与∠2互为对顶角,∴∠1=∠2,故选项A不符合题意;选项B、∵∠1=∠B+∠C,∴∠1>∠B,故选项B符合题意;选项C、∵∠2=∠D+∠A,∴∠2>∠D,故选项C不符合题意;选项D、∵,,∴,故选项D不符合题意;故选:B.【点睛】本题主要考查了对顶角的性质、平行线的性质和三角形内角和、外角的性质,能熟记对顶角的性质是解此题的关键.4、B【解析】【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.5、C【解析】【分析】由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.【详解】解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;B、如图, 若两线平行,则∠3=∠2,则 若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C.【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.6、A【解析】【分析】由三角形的稳定性即可得出答案.【详解】一扇窗户打开后,用窗钩AB可将其固定,故选:A.【点睛】本题考查了三角形的稳定性,加上窗钩AB构成了△AOB,而三角形具有稳定性是解题的关键.7、C【解析】【分析】根据三角形三条边的关系计算即可.【详解】解:A. ∵2+4=6,∴,,不能组成三角形;B. ∵2+5<9,∴,,不能组成三角形;C. ∵7+8>10,∴,,能组成三角形;D. ∵6+6<13,∴,,不能组成三角形;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.8、D【解析】【分析】根据三角形的内角和定理、邻补角的性质即可得.【详解】解:如图,,,又,,即三角形的外角和是,故选:D.【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.9、B【解析】【分析】根据在三角形中三边关系可求第三边长的范围,再选出答案.【详解】解:设第三边长为x,则由三角形三边关系定理得7-5<x<7+5,即2<x<12.只有选项B符合题意,故选:B.【点睛】本题考查了三角形三边关系,掌握三角形的三边关系是解题的关键.三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.10、D【解析】【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”,这样就可求出第三边长的范围,进而选出答案【详解】解:设它的第三条边的长度为xcm,依题意有 ,即,故只有D符合题意,故选:D.【点睛】本题考查的是三角形的三边关系,掌握三角形三边关系:三角形两边之和大于第三边、三角形的两边差小于第三边是解题的关键.二、填空题1、180度##【解析】【分析】如图,连接 记的交点为 先证明再利用三角形的内角和定理可得答案.【详解】解:如图,连接 记的交点为 故答案为:【点睛】本题考查的是三角形的内角和定理,作出合适的辅助线构建三角形是解本题的关键.2、30【解析】【分析】根据三角形的面积公式求出△ACD的面积,利用三角形中线的性质即可求解.【详解】解:∵∠C=90°,CD=5cm,AC=12cm,∴△ACD的面积为(cm2),∵AD是BC边上的中线,∴△ACD的面积=△ABD的面积为(cm2),故答案为:30.【点睛】本题考查了三角形的面积和三角形中线的性质,关键是根据三角形的中线把三角形分成面积相等的两部分解答.3、2<n<12【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求第三边长的范围.【详解】解:由三角形三边关系定理得:7﹣5<n<7+5,即2<n<12故n的范围是2<n<12.故答案为:2<n<12.【点睛】本题考查的是三角形三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.4、3<m<9【解析】【分析】直接利用三角形三边关系得出答案.【详解】解:∵△ABC的边AB、BC的长是方程组的解,边AC的长为m,∴m的取值范围是:3<m<9,故答案为:3<m<9.【点睛】本题主要考查了三角形三边关系,正确掌握三角形三边关系是解题关键.5、60°##60度【解析】【分析】依题意,利用三角形内角和为:,即可;【详解】由题得:一个三角形的内角和为:;又已知两个其中的内角为:,;∴ 第三个角为:;故填:【点睛】本题主要考查三角形的内角和,关键在于熟练并运用基本的计算;三、解答题1、见解析【解析】【分析】连接,,再根据三角形的三边关系即可得出结论.【详解】连接,,,,.当且仅当CD过圆心O时,取“=”号,.【点睛】本题考查的是三角形的三边关系,解题的关键是熟知三角形任意两边之和大于第三边.2、(1)30;(2)DE∥AC,理由见解析;(3)15;(4)图④∠DCB=60°;图⑤∠DCB=120°;【解析】【分析】(1)根据两直线平行,内错角相等求解即可;(2)根据内错角相等,两直线平行证明即可;(3)根据AB∥EC,得到∠ECB=∠B=30°,即可得到∠DCB=∠DCE-∠ECB=15°;(4)如图④所示,,设CD与AB交于F,由平行线的性质可得∠BFC=∠EDC=90°,再由三角形内角和定理∠DCB=180°-∠BFC-∠B=60°;如图⑤所示,延长AC交ED延长线于G,由平行线的性质可得∠G=∠A=60°,再由∠ACB=∠CDE=90°,得到∠BCG=∠CDG=90°,即可求出∠DCG=180°-∠G-∠CDG=30°,则∠BCD=∠BCG+∠DCG=120°.【详解】解:(1)∵AB∥CD,∴∠BCD=∠B=30°,故答案为:30;(2)DE∥AC,理由如下:∵∠CBE=∠ACB=90°,∴DE∥AC;(3)∵AB∥EC,∴∠ECB=∠B=30°,又∵∠DCE=45°,∴∠DCB=∠DCE-∠ECB=15°,∴当∠DCB=15°时,AB∥EC,故答案为:15;(4)如图④所示,设CD与AB交于F,∵AB∥ED,∴∠BFC=∠EDC=90°,∴∠DCB=180°-∠BFC-∠B=60°;如图⑤所示,延长AC交ED延长线于G,∵AB∥DE,∴∠G=∠A=60°,∵∠ACB=∠CDE=90°,∴∠BCG=∠CDG=90°,∴∠DCG=180°-∠G-∠CDG=30°,∴∠DCB=∠BCG+∠DCG=120°.【点睛】本题主要考查了平行线的性质与判定,三角形内角和定理,邻补角互补等等,解题的关键在于能够熟练掌握平行线的性质与判定条件.3、(1)3;(2).【解析】【分析】(1)首先根据中线的性质得到,然后根据的周长为13,即可求出AB的长;(2)首先根据BD是的角平分线得到,然后根据三角形内角和定理即可求出的度数.【详解】(1)∵BE是的AC边上的中线,∴,又∵的周长为13,∴;(2)∵BD是的角平分线,∴,又∵,∴.【点睛】此题考查三角形中线和角平分线的概念,三角形内角和定理的运用,解题的关键是熟练掌握三角形中线和角平分线的概念,三角形内角和定理.4、75°【解析】【分析】根据角平分线的定义求出∠DAC的度数,所以EDCA可求,进而求出∠ACB的度数.【详解】解:∵AD是∠BAC的平分线,∠BAC=80°,∴∠DAC=40°,∵CE是△ADC边AD上的高,∴∠ACE=90°﹣40°=50°,∵∠ECD=25°∴∠ACB=50°+25°=75°.【点睛】本题主要考查了三角形的内角和定理.解题的关键是掌握三角形的内角和定理以及角平分线的性质.5、(1)30,90;(2)105°;(3)不变,理由见解析【解析】【分析】(1)根据题意作出图形,根据所给的条件求解即可;(2)由旋转的性质可得∠AOB=∠A'OB'=45°,由角的数量关系可求解;(3)由α可分别表示∠B'A'D,∠B'OC,∠A'DC再求和即可.【详解】解:(1)当A'B'∥OC时,∴∠A′OC+∠A′=180°,∵∠A′=90°,∴∠A′OC=90°,∴∠AOA′=180°﹣90°﹣60°=30°,即α=30°;当A'B'⊥CD时,则OA′∥CD,∴∠AOA′=∠ODC=90°,即α=90°;故答案为:30;90.(2)∵△OAB以O为中心顺时针旋转得到△OA′B′,∴∠AOB=∠A'OB'=45°,∵∠COD=60°,OB′平分∠COD,∴∠DOB'=30°,∴∠AOA'=180°﹣∠DOB′﹣∠A'OB′=180°﹣30°﹣45°=105°,即当α为105°时,OB'平分∠COD;(3)不变,理由如下:∵∠AOA′=α,∴∠B′OD=180°﹣45°﹣α=135°﹣α,∴∠B′OC=60°﹣(135°﹣α)=α﹣75°,设∠A′DC=β,∴∠A′DO=90°﹣β,∴∠B′OD+∠A′DO=∠B'A'D+∠B′,即135°﹣α+90°﹣β=∠B'A'D+45°,解得∠B'A'D=180°﹣α﹣β,∴∠B'A'D+∠B'OC+∠A'DC=180°﹣α﹣β+α﹣75°+β=105°.【点睛】本题考查了三角板的角度计算,角平分线的定义,旋转的性质,三角形的内角和与外角的性质,平行线的性质,根据题意作出图形是解题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课后复习题,共22页。试卷主要包含了如图,在中,,,则外角的度数是,如图,,,,则的度数是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试精练,共21页。试卷主要包含了如图,点D,下列图形中,不具有稳定性的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试当堂检测题,共22页。