![难点详解冀教版七年级数学下册第九章 三角形章节训练试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12767011/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版七年级数学下册第九章 三角形章节训练试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12767011/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版七年级数学下册第九章 三角形章节训练试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12767011/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版七年级下册第九章 三角形综合与测试随堂练习题
展开
这是一份冀教版七年级下册第九章 三角形综合与测试随堂练习题,共22页。试卷主要包含了如图,图形中的的值是等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在△ABC中,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,∠D=15°,则∠A的度数为( )A.30° B.45° C.20° D.22.5°2、如图,于点,于点,于点,下列关于高的说法错误的是( )A.在中,是边上的高 B.在中,是边上的高C.在中,是边上的高 D.在中,是边上的高3、三角形的外角和是( )A.60° B.90° C.180° D.360°4、如图,把△ABC绕顶点C按顺时针方向旋转得到△A′B′C′,当A′B′⊥AC,∠A=50°,∠A′CB=115°时,∠B′CA的度数为( )A.30° B.35° C.40° D.45°5、将一张正方形纸片ABCD按如图所示的方式折叠,CE、CF为折痕,点B、D折叠后的对应点分别为B'、D',若∠ECF=21°,则∠B'CD'的度数为( )A.35° B.42° C.45° D.48°6、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )A.两点确定一条直线B.两点之间,线段最短C.三角形具有稳定性D.三角形的任意两边之和大于第三边7、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为( )A.40° B.45° C.50° D.60°8、如图,图形中的的值是( )A.50 B.60 C.70 D.809、三个等边三角形的摆放位置如图所示,若,则的度数为 A. B. C. D.10、如图,在ABC中,∠A=55°,∠B=45°,那么∠ACD的度数为( )A.110 B.100 C.55 D.45第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将一张三角形纸片ABC的一角折叠,使得点A落在四边形BCDE的外部A'的位置,且A'与点C在直线AB的异侧,折痕为DE,已知∠C=90°,∠A=30°.若保持△A′DE的一边与 BC平行,则∠ADE的度数______.2、如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=56°,∠2=29°,则∠A的度数为______度.3、如图,在△ABC中,CD平分∠ACB.若∠A=70°,∠B=50°,则∠ADC=_____度.4、已知的三个内角的度数之比::::,则 ______ 度, ______ 度.5、已知ABC中,AB=5,AC=7,BC=a,则a的取值范围是 ___.三、解答题(5小题,每小题10分,共计50分)1、已知,如图,在△ABC中,AH平分∠BAC交BC于点H,D、E分别在CA、BA 的延长线上,DB∥AH,∠D=∠E. (1))求证:DB∥EC;(2)若∠ABD=2∠ABC,∠DAB比∠AHC大5°.求∠D的度数.2、完成下面的证明已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE//BA,DF//CA.求证:∠A+∠B+∠C=180°.证明:∵DE//BA,∴∠3= ( ),∠2= ( ).∵DF//CA,∴∠1= ( ),∠BFD= ( ).∴∠2= ( ).∵∠1+∠2+∠3=180°(平角的定义),∴∠A+∠B+∠C=180°(等量代换).3、如图,已知在△ABC中,∠A=20°,∠B=60°,CD平分∠ACB交AB于点D,求∠CDB的度数.4、如图,在中,是角平分线,,.(1)求的度数;(2)若,求的度数.5、如图,在△ABC中,∠ABC的角平分线交AC千点E,过点E作DF∥BC,交AB于点D,且EC平分∠BEF.(1)若∠ADE=50°,求∠BEC的度数;(2)若∠ADE=α,则∠AED= (含α的代数式表示). -参考答案-一、单选题1、A【解析】【分析】由三角形的外角的性质可得再结合角平分线的性质进行等量代换可得从而可得答案.【详解】解: ∠ABC与∠ACE的平分线相交于点D, 故选A【点睛】本题考查的是三角形的角平分线的性质,三角形的外角的性质,熟练的利用三角形的外角的性质结合等量代换得到是解本题的关键.2、C【解析】【详解】解:A、在中,是边上的高,该说法正确,故本选项不符合题意;B、在中,是边上的高,该说法正确,故本选项不符合题意;C、在中,不是边上的高,该说法错误,故本选项符合题意;D、在中,是边上的高,该说法正确,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.3、D【解析】【分析】根据三角形的内角和定理、邻补角的性质即可得.【详解】解:如图,,,又,,即三角形的外角和是,故选:D.【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.4、B【解析】【分析】由旋转的性质可得∠A′=∠A=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠A′CA=40°,即可求解.【详解】解:根据旋转的性质可知∠A′=∠A=50°,∠BCB'=∠ACA',∴∠A′CA=90°﹣50°=40°,∴∠BCB′=∠A′CA=40°,∴∠B′CA=∠A′CB﹣∠A′CA﹣∠BCB′=115°﹣40°﹣40°=35°.故选:B.【点睛】本题主要考查了旋转的性质,三角形内角和定理的应用,解决这类问题要找准旋转角、以及旋转后对应的线段和角.5、D【解析】【分析】可以设∠ECB'=α,∠FCD'=β,根据折叠可得∠DCE=∠D'CE,∠BCF=∠B'CF,进而可求解.【详解】解:设∠ECB'=α,∠FCD'=β,根据折叠可知:∠DCE=∠D'CE,∠BCF=∠B'CF,∵∠ECF=21°,∴∠D'CE=21°+β,∠B'CF=21°+α,∵四边形ABCD是正方形,∴∠BCD=90°,∴∠D'CE+∠ECF+∠B'CF=90°∴21°+β+21°+21°+α=90°,∴α+β=27°,∴∠B'CD'=∠ECB'+∠ECF+∠FCD'=α+21°+β=21°+27°=48°则∠B'CD'的度数为48°.故选:D.【点睛】本题考查了正方形与折叠问题,解决本题的关键是熟练运用折叠的性质.6、C【解析】【分析】根据三角形具有稳定性进行求解即可.【详解】解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,故选C.【点睛】本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.7、C【解析】【分析】根据三角形内角和定理确定,然后利用平行线的性质求解即可.【详解】解:∵,,∴,∵,∴,故选:C.【点睛】题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.8、B【解析】【分析】根据三角形外角的性质:三角形一个外角的度数等于与其不相邻的两个内角的度数和进行求解即可.【详解】解:由题意得: ∴,∴,故选B.【点睛】本题主要考查了三角形外角的性质,解一元一次方程,熟知三角形外角的性质是解题的关键.9、A【解析】【分析】利用三个平角的和减去中间三角形的内角和,再减去三个的角即可.【详解】解:,,,,,,故选:.【点睛】本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.10、B【解析】【分析】根据三角形的外角的性质计算即可.【详解】解:由三角形的外角的性质可知,∠ACD=∠A+∠B=100°,故选:B.【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解答本题的关键.三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角.二、填空题1、45°或30°【解析】【分析】分DA'BC或EA'BC两种情况,分别画出图形,即可解决问题.【详解】解:当DA'BC时,如图,∠A'DA=∠ACB=90°,∵△ADE沿DE折叠到A'DE,∴∠ADE=∠A'DE=∠ADA′=45°,当EA'BC时,如图,在△ABC中,∠B=180°-∠C-∠A=60°,∴∠2=∠ABC=60°,由折叠可知,∠A′=∠A=30°,在△A′EF中,∠A′+∠2+∠A′FE=180°,∴∠2=180°-∠A′-∠A′FE=150°-∠A′FE,在四边形BCDF中,∠1+∠C+∠B+∠BFD=360°,∴∠1=360°-∠C-∠B-∠BFD=210°-∠BFD,∵∠BFD=∠A′FE,∴∠1-∠2=210°-150°=60°,∴∠1=∠2+60°=120°,∵△ADE沿DE折叠到A'DE,∴∠ADE=∠A'DE=∠ADA′=(180°-∠1)=30°,综上所述,∠ADE的度数为:45°或30°.故答案为:45°或30°.【点睛】本题主要考查了翻折的性质,平行线的性质等知识,能根据题意,运用分类讨论思想分别画出图形是解题的关键.2、27【解析】【分析】如图,∠3=∠1,由∠3=∠2+∠A计算求解即可.【详解】解:如图∵a∥b,∠1=56°∴∠3=∠1=56°∵∠3=∠2+∠A,∠2=29°∴∠A=∠3﹣∠2=56°﹣29°=27°故答案为:27.【点睛】本题考查了平行线性质中的同位角,三角形的外角等知识.解题的关键在于正确的表示角的数量关系.3、80【解析】【分析】首先根据三角形的内角和定理求得∠BCA=180°-∠A-∠B=60°,再根据角平分线的概念,得∠ACD=∠BCA=30°,最后根据三角形ADC的内角和来求∠ADC度数.【详解】解:∵在△ABC中,∠A=70°,∠B=50°,∴∠BCA=180°-∠B-∠C=60°;又∵CD平分∠BCA,∴∠DCA=∠BCA=30°,∴∠ADC=180°-70°-30°=80°.故答案为:80.【点睛】本题主要考查了三角形的内角和定理以及角平分线的概念.解题的关键是找到已知角与所求角之间的数量关系.4、 60 100【解析】【分析】设一份为,则三个内角的度数分别为,,,再利用内角和定理列方程,再解方程可得答案.【详解】解:设一份为,则三个内角的度数分别为,,.则,解得.所以,,即,.故答案为:【点睛】本题考查的是三角形的内角和定理的应用,利用三角形的内角和定理构建方程是解本题的关键.5、2<a<12【解析】【分析】直接利用三角形三边关系得出a的取值范围.【详解】解:∵△ABC中,AB=5,AC=7,BC=a,∴7﹣5<a<7+5,即2<a<12.故答案为:2<a<12.【点睛】本题考查了三角形的三边关系,做题的关键是掌握三角形中任意两边之和大于第三边,两边之差小于第三边.三、解答题1、(1)见解析;(2)50°【解析】【分析】(1)根据平行线的性质可得∠D=∠CAH,根据角平分线的定义可得∠BAH=∠CAH,再根据已知条件和等量关系可得∠BAH=∠E,再根据平行线的判定即可求解;(2)可设∠ABC=x,则∠ABD=2x,则∠BAH=2x,可得∠DAB=180°−4x,可得∠AHC=175°−4x,可得175°−4x=3x,解方程求得x,进一步求得∠D的度数.【详解】(1)证明:∵DBAH,∴∠D=∠CAH,∵AH平分∠BAC,∴∠BAH=∠CAH,∵∠D=∠E,∴∠BAH=∠E,∴AHEC,∴DBEC;(2)解:设∠ABC=x,则∠ABD=2x,∠BAH=2x,∠DAB=180°−4x,∠DAB比∠AHC大5°∠AHC=175°−4x, DBAH, 即:175°−4x=3x,解得x=25°,则∠D=∠CAH=∠BAH=∠ABD=2x=50°.【点睛】考查了三角形内角和定理,平行线的判定与性质,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.2、∠B,两直线平行,同位角相等;∠BFD,两直线平行,内错角相等;∠C,两直线平行,同位角相等;∠A,两直线平行,同位角相等;∠A,等量代换【解析】【分析】先根据平行线的性质得出∠A=∠2,∠1=∠C,∠3=∠B,再由平角的定义即可得出结论.【详解】证明:∵DE//B∴∠3=∠B(两直线平行,同位角相等),∠2=∠BFD(两直线平行,内错角相等),∵DF//CA,∴∠1=∠C(两直线平行,同位角相等),∠A=∠BFD(两直线平行,同位角相等),∴∠2=∠A(等量代换).∵∠1+∠2+∠3=180°(平角的定义),∴∠A+∠B+∠C=180°(等量代换).故答案为:∠B,两直线平行,同位角相等;∠BFD,两直线平行,内错角相等;∠C,两直线平行,同位角相等;∠A,两直线平行,同位角相等;∠A,等量代换.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.3、70°【解析】【分析】根据三角形内角和定理求出∠C的度数,根据角平分线的性质求出∠ACD的度数,再根据三角形的外角性质求得答案.【详解】解:在△ABC中,∠A=20°,∠B=60°,∴,∵CD平分∠ACB,∴,∴.【点睛】此题考查了三角形的内角和定理,角平分线定理,外角定理,熟记各定理并熟练应用是解题的关键.4、 (1);(2).【解析】【分析】(1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;(2)根据垂直得出,然后根据三角形内角和定理即可得.(1)解:∵,,∴,∵AD是角平分线,∴,∴;(2)∵,∴,∴,∴.【点睛】题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.5、(1)77.5°;(2)90°﹣α;【解析】【分析】(1)根据平行线的性质得到∠ABC=∠ADE=50°,根据角平分线的定义∠EBC=25°,根据角平分线的定义和平行线的性质可得∠BEC=∠C,根据三角形的内角和定理即可得到结论;(2)根据角平分线的定义和平行线的性质以及三角形的内角和定理即可得到结论.【详解】解:(1)∵DF∥BC,∴∠ADE=∠ABC=50°,∠CEF=∠C,∵BE平分∠ABC,∴∠DEB=∠EBC=25°,∵EC平分∠BEF,∴∠CEF=∠BEC=∠C,∵∠BEC+∠C+∠EBC=180°,∴∠BEC=77.5°;(2)∵DF∥BC,∴∠ADE=∠ABC=α,∵BE平分∠ABC,∴∠DEB=∠EBC=α,∵EC平分∠BEF,∴∠AED=∠CEF=(180°﹣α)=90°﹣α.故答案为:90°﹣α.【点睛】本题考查平行的性质与判定,角平分线的性质,以及三角形的内角和定理,熟练应用平行的性质与判定结合角平分线的性质是解决本题的关键.
相关试卷
这是一份数学七年级下册第九章 三角形综合与测试课后练习题,共25页。试卷主要包含了如图,直线l1l2,被直线l3,若一个三角形的三个外角之比为3等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试课后作业题,共22页。试卷主要包含了如图,在ABC中,点D等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试测试题,共23页。