搜索
    上传资料 赚现金
    英语朗读宝

    精品试题冀教版七年级数学下册第九章 三角形专题练习练习题(精选)

    精品试题冀教版七年级数学下册第九章 三角形专题练习练习题(精选)第1页
    精品试题冀教版七年级数学下册第九章 三角形专题练习练习题(精选)第2页
    精品试题冀教版七年级数学下册第九章 三角形专题练习练习题(精选)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版七年级下册第九章 三角形综合与测试同步测试题

    展开

    这是一份冀教版七年级下册第九章 三角形综合与测试同步测试题,共25页。试卷主要包含了如图,为估计池塘岸边A等内容,欢迎下载使用。
    冀教版七年级数学下册第九章 三角形专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、已知的三边长分别为abc,则abc的值可能分别是(       A.1,2,3 B.3,4,7C.2,3,4 D.4,5,102、三个等边三角形的摆放位置如图所示,若,则的度数为  A. B. C. D.3、如图,,则的度数是(       A.10° B.15° C.20° D.25°4、以下列长度的各组线段为边,能组成三角形的是(     A. B.C. D.5、如图,将BC边对折,使点B与点C重合,DE为折痕,若,则       ).A.45° B.60° C.35° D.40°6、若三条线段中a=3,b=5,c为奇数,那么以abc为边组成的三角形共有(       A.1个 B.2个 C.3个 D.4个7、如图,为估计池塘岸边AB两点的距离,小方在池塘的一侧选取一点OOA=15米,OB=10米,AB间的距离不可能是(  )A.5米 B.10米 C.15米 D.20米8、当三角形中一个内角是另一个内角的2倍时,我们称此三角形为“特征三角形”,其中称为“特征角”.如果一个“特征三角形”的“特征角”为60°,那么这个“特征三角形”的最大内角的度数是(       A.80° B.90° C.100° D.120°9、如图,钝角中,为钝角,边上的高,的平分线,则之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是(       A. B.C. D.10、如图,点BGC在直线FE上,点D在线段AC上,下列是ADB的外角的是(  )A.∠FBA B.∠DBC C.∠CDB D.∠BDG第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,的平分线交于点上的一点,的平分线交于点,且,下列结论:平分③与互余的角有个;④若,则其中正确的是________.(请把正确结论的序号都填上)2、一个三角形的三个内角之比为1:2:3,这个三角形最小的内角的度数是 _____.3、中,大10°,,则______.4、如图,在△ABC中,点DCB的延长线上,∠A=60°,∠ABD=110°,则∠C等于___.5、如图,三角形ABC的面积为1,EAC的中点,ADBE相交于P,那么四边形PDCE的面积为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,AD是高,AEBF是角平分线,它们相交于点O,∠BAC=50°,∠C=60°,求∠DAC和∠BOA的度数.2、将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起,其中∠A=60°,∠D=45°. (1)如图1,若∠BOD=65°,则∠AOC=______ ;∠AOC=120°,则∠BOD=____ ; (2)如图2,若∠AOC=150°,则∠BOD=_____ ; (3)猜想∠BOD与∠AOC的数量关系,并结合图1说明理由;(4)如图3三角尺AOB不动,将三角尺CODOD边与OA边重合,然后绕点O按顺时针以1秒钟15°的速度旋转,当时间t(其中0<t≤6,单位:秒)为何值时,这两块三角尺各有一条边互相垂直,直接写出t的值.3、已知,△ABC中,∠C>∠BAE平分∠BACMAE上一点,MNBCN(1)如图①,当点MA重合时,若∠B=40°,∠C=80°,求∠EMN的度数;(2)如图②,当点M在线段AE上(不与AE重合),用等式表示∠EMN与∠B,∠C之间的数量关系,并证明你的结论;(3)如图③,当点M在线段AE的延长线上,连接MC,过点AMC的垂线,交MC的延长线于点F,交BC的延长线上于点D①依题意补全图形;②若∠Bα°,∠ACBβ°,∠Dγ°,则∠AMC          °.(用含αβγ的式子表示)4、如图,在中(),边上的中线的周长分成两部分,求的长.5、已知:如图,△ABC中,∠BAC=80°,ADBCDAE平分∠DAC,∠B=60°,求∠AEC的度数. -参考答案-一、单选题1、C【解析】【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.2、A【解析】【分析】利用三个平角的和减去中间三角形的内角和,再减去三个的角即可.【详解】解:故选:【点睛】本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.3、B【解析】【分析】根据平行线的性质求出关于∠DOE,然后根据外角的性质求解.【详解】解:∵ABCD,∠A45°,∴∠A=∠DOE45°,∵∠DOE=∠C+E又∵∴∠E=∠DOE-∠C15°.故选:B【点睛】本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.掌握两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和是解题关键.4、C【解析】【分析】根据三角形三条边的关系计算即可.【详解】解:A. ∵2+4=6,∴不能组成三角形;B. ∵2+5<9,∴不能组成三角形;C. ∵7+8>10,∴能组成三角形;D. ∵6+6<13,∴不能组成三角形;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.5、A【解析】【分析】由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.【详解】解:由折叠得∠B=∠BCD∵∠A+∠B+∠ACB=180°∴65°+2∠B+25°=180°∴∠B=45°故选:A.【点睛】此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.6、C【解析】【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.c是奇数,c=3或5或7,有3个值.则对应的三角形有3个.故选:C【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.7、A【解析】【分析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,AB间的距离在5和25之间,AB间的距离不可能是5米;故选:A【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.8、B【解析】【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最大内角即可.【详解】解:由题意得:α=2β,α=60°,则β=30°,180°-60°-30°=90°,故选B.【点睛】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.9、B【解析】【分析】根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.【详解】解:由三角形内角和知∠BAC=180°-∠2-∠1,AE为∠BAC的平分线,∴∠BAE=BAC=(180°-∠2-∠1).ADBC边上的高,∴∠ADC=90°=∠DAB+∠ABD又∵∠ABD=180°-∠2,∴∠DAB=90°-(180°-∠2)=∠2-90°,∴∠EAD=∠DAB+∠BAE=∠2-90°+(180°-∠2-∠1)=(∠2-∠1).故选:B【点睛】本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.10、C【解析】【分析】根据三角形的外角的概念解答即可.【详解】解:A.∠FBA是△ABC的外角,故不符合题意;B. ∠DBC不是任何三角形的外角,故不符合题意;C.∠CDB是∠ADB的外角,符合题意;D. ∠BDG不是任何三角形的外角,故不符合题意;故选:C.【点睛】本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.二、填空题1、①②【解析】【分析】BDBCBD平分∠GBE,可判断①正确;由CB平分∠ACFAECF及①的结论可判断②正确;由前两个的结论可对③作出判断;由AECFACBG、三角形外角的性质可求得∠BDF,从而可对④作出判断.【详解】BD平分∠GBE∴∠EBD=∠GBD=GBEBDBC∴∠GBD+∠GBC=∠CBD=90°∴∠DBE+∠ABC=90°∴∠GBC=∠ABCBC平分∠ABG故①正确CB平分∠ACF∴∠ACB=∠GCBAECF∴∠ABC=∠GCB∴∠ACB=∠GCB=∠ABC=∠GBCACBG故②正确∵∠DBE+∠ABC=90°,∠ACB=∠GCB=∠ABC=∠GBC∴与∠DBE互余的角共有4个 故③错误ACBG,∠A=α∴∠GBE=αAECF∴∠BGD=180°-∠GBE=180°−α∴∠BDF=∠GBD+∠BGD=故④错误即正确的结论有①②故答案为:①②【点睛】本题考查了平行线的判定与性质,互余概念,垂直的定义,角平分线的性质等知识,掌握这些知识并正确运用是关键.2、30°##30度【解析】【分析】设三角形的三个内角分别为x,2x,3x,再根据三角形内角和定理求出x的值,进而可得出结论.【详解】解:∵三角形三个内角的比为1:2:3,∴设三角形的三个内角分别为x,2x,3xx+2x+3x=180°,解得x=30°.∴这个三角形最小的内角的度数是30°.故答案为:30°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.3、70°【解析】【分析】根据三角形内角和定理可得,由题意,可得,组成方程组求解即可.【详解】解:解得:故答案为:【点睛】题目主要考查三角形内角和定理及二元一次方程组的应用,理解题意,列出代数式组成方程组是解题关键.4、50°【解析】【分析】首先根据平角的概念求出的度数,然后根据三角形内角和定理即可求出的度数.【详解】解:∵∠ABD=110°,故答案为:50°.【点睛】此题考查了平角的概念,三角形三角形内角和定理,解题的关键是熟练掌握平角的概念,三角形三角形内角和定理.5、【解析】【分析】连接CP.设△CPE的面积是x,△CDP的面积是y.根据BDDC=2:1,EAC的中点,得△BDP的面积是2y,△APE的面积是x,进而得到△ABP的面积是4x.再根据△ABE的面积是△BCE的面积相等,得4x+x=2y+x+y,解得,再根据△ABC的面积是1即可求得xy的值,从而求解.【详解】解:连接CP, 设△CPE的面积是x,△CDP的面积是yBDDC=2:1,EAC的中点, ∴△BDP的面积是2y,△APE的面积是xBDDC=2:1,CEAC=1:2, ∴△ABP的面积是4x∴4x+x=2y+x+y解得又∵4x+x=解得:x=,则 则四边形PDCE的面积为x+y=故答案为:【点睛】本题能够根据三角形的面积公式求得三角形的面积之间的关系.等高的两个三角形的面积比等于它们的底的比;等底的两个三角形的面积比等于它们的高的比.三、解答题1、∠DAC=30°,∠BOA=120°.【解析】【分析】根据三角形的内角和定理,高线、角平分线的定义进行解答即可.【详解】解:∵在△ABC中,AD是高,∴∠ADC=90°,∵在△ACD中,∠C=60°,∴∠DAC=90°-60°=30°,∵在△ABC中,∠C=60°,∠BAC=50°,∴∠ABC=70°,∵在△ABC中,AEBF分别是∠BAC和∠ABC的角平分线,∴∠EAC=BAC=25°,∠FBC=ABC=35°,∴∠BOA=∠BEA+∠FBC=∠C+∠EAC+∠FBC=60°+25°+35°=120°.【点睛】本题考查了三角形的内角和定理,高线、角平分线的定义,熟记定义并准确识图,理清图中各角度之间的关系是解题的关键.2、(1)115°,60°;(2)30°;(3)∠AOC+∠DOB=180°,理由见解析;(4)时间t为2秒或3秒或5秒或6秒时,这两块三角尺各有一条边互相垂直.【解析】【分析】(1)由于是两直角三角形板重叠,根据∠AOC=∠AOB+∠COD-∠BOD可分别计算出∠AOC、∠BOD的度数;(2)根据∠BOD=360°-∠AOC-∠AOB-∠COD计算可得;(3)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知两角互补;(4)分别利用ODABCDOBCDABOCAB分别求出即可.【详解】解:(1)若∠BOD=65°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD-∠BOD=90°+90°-65°=115°,若∠AOC=120°,则∠BOD=∠AOB+∠COD-∠AOC=90°+90°-120°=60°;故答案为:115°;60°;(2)如图2,若∠AOC=150°,则∠BOD=360°-∠AOC-∠AOB-∠COD=360°-150°-90°-90°=30°;故答案为:30°;(3)∠AOC与∠BOD互补.理由如下:∵∠AOB=∠COD=90°,∴∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC∴∠AOC+∠BOD=180°,即∠AOC与∠BOD互补;(4)分四种情况讨论:ODAB时,∠AOD=90°-∠A=30°,t=30°15°=2(秒);CDOB时,∠AOD=∠D=45°,t=45°15°=3(秒);CDAB时,∠AOD=180°-60°-45°=75°,t=75°15°=5(秒);ODOA时,∠AOD=90°,t=90°15°=6(秒);综上,时间t为2秒或3秒或5秒或6秒时,这两块三角尺各有一条边互相垂直.【点睛】本题主要考查了互补、互余的定义,垂直的定义以及三角形内角和定理等知识的综合运用,解决本题的关键是掌握:如果两个角的和等于180°(平角),就说这两个角互为补角,其中一个角是另一个角的补角.3、(1);(2),见解析;(3)①见解析;②【解析】【分析】(1)根据三角形内角和求出∠BAC=180°-40°-80°=60°.根据AE平分∠BAC,∠CAEBAC=30°,利用三角形内角和∠C=80°,∠MNC=90°,得出∠CMN=10°即可;(2)∠EMN(∠C-∠B);证法1:如图,作ADBCD.根据AE平分∠BAC,可得∠EACBAC(180°-∠B-∠C).根据RtDAC中,∠DAC=90°-∠C,得出∠EAD=∠EAC-∠DAC=(∠C-∠B).根据ADBCMNBC,可得AD//MN,得出∠EMN=∠EAD(∠C-∠B).证法2:根据 AE平分∠BAC,得出∠EACBAC(180°-∠B-∠C),根据三角形内角和得出AEC=180°-∠EAC-∠C=90°-(∠C-∠B)即可;(3)①依题意补全图形,当点M在线段AE的延长线上,连接MC,过点AADMCMC的延长线于点F,交BC的延长线上于点D,如图;                                   ②∠AMC.过AAGBCGMNBCN,可得MN∥AG,得出∠NME=∠GAE=(∠ACB-∠B),根据MCAD,得出∠CFD=∠CNM=90°,可证∠NMC=∠D根据两角差∠AMC=∠NMC-∠NME=∠D-∠NME=∠D-ACB+B即可【详解】解:(1)∵∠B=40°,∠C=80°,∴∠BAC=180°-40°-80°=60°.又∵AE平分∠BAC∴∠CAEBAC=30°,∵∠C=80°,∠MNC=90°,∴∠CMN=10°,∴∠EMN=∠CAE-∠CMN=30°-10°=20°;(2)∠EMN(∠C-∠B).                                     证法1:如图,作ADBCDAE平分∠BAC∴∠EACBAC(180°-∠B-∠C).RtDAC中,∠DAC=90°-∠C∴∠EAD=∠EAC-∠DAC(180°-∠B-∠C)-(90°-∠C)=(∠C-∠B).ADBCMNBCAD//MN∠EMN=∠EAD(∠C-∠B).            证法2:∵AE平分∠BAC∴∠EACBAC(180°-∠B-∠C),∴∠AEC=180°-∠EAC-∠C=90°-(∠C-∠B),∠EMN=90°-∠AEC(∠C-∠B).(3)①依题意补全图形,当点M在线段AE的延长线上,连接MC,过点AADMCMC的延长线于点F,交BC的延长线上于点D.如图;                                   ②∠AMCAAGBCGMNBCNMN∥AG∴∠NME=∠GAE=(∠ACB-∠B),MCAD∴∠CFD=∠CNM=90°,∵∠FCD=∠NCM∴∠NMC=180°-∠CNM-∠NCM=180°-∠CFD-∠FCD=∠D∴∠AMC=∠NMC-∠NME=∠D-∠NME=∠D-ACB+B,∵∠Bα°,∠ACBβ°,∠Dγ°,∴∠AMC=γ°-β°+α°.【点睛】本题考查三角形内角和,角平分线定义,平行线性质,角的和差,补全图形,垂线定义,掌握三角形内角和,角平分线定义,平行线性质,角的和差,作图语句,垂线定义是解题关键.4、【解析】【分析】由题意可得,由中线的性质得,故可求得,即可求得【详解】由题意知DBC中点BC=24,CD=BD=12且28>24符合题意.【点睛】本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段.5、∠AEC=115°【解析】【分析】利用三角形的内角和定理求解 再利用三角形的高的含义求解 再结合角平分线的定义求解 再利用三角形的内角和定理可得答案.【详解】解:BAC=80°,∠B=60°, ADBC AE平分∠DAC 【点睛】本题考查的是三角形的高,角平分线的含义,三角形的内角和定理的应用,熟练的运用三角形的高与角平分线的定义结合三角形的内角和定理得到角与角之间的关系是解本题的关键. 

    相关试卷

    初中数学第九章 三角形综合与测试课堂检测:

    这是一份初中数学第九章 三角形综合与测试课堂检测,共21页。试卷主要包含了如图,,,,则的度数是,如图,图形中的的值是,如图,为估计池塘岸边A等内容,欢迎下载使用。

    冀教版七年级下册第九章 三角形综合与测试练习题:

    这是一份冀教版七年级下册第九章 三角形综合与测试练习题,共23页。试卷主要包含了下列叙述正确的是,如图,是的中线,,则的长为等内容,欢迎下载使用。

    数学七年级下册第九章 三角形综合与测试同步训练题:

    这是一份数学七年级下册第九章 三角形综合与测试同步训练题,共25页。试卷主要包含了如图,图形中的的值是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map