2020-2021学年第九章 三角形综合与测试练习
展开
这是一份2020-2021学年第九章 三角形综合与测试练习,共19页。试卷主要包含了如图,是的中线,,则的长为,如图,直线l1等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知三角形的两边长分别为2cm和3cm,则第三边长可能是( )A.6cm B.5cm C.3cm D.1cm2、以下列长度的各组线段为边,能组成三角形的是( )A.,, B.,,C.,, D.,,3、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )A.1个 B.2个 C.3个 D.4个4、如图,是的中线,,则的长为( )A. B. C. D.5、如图, AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )A.6 B.5 C.4 D.36、下列长度的三条线段能组成三角形的是( )A.3,4,8 B.5,6,11 C.5,6,10 D.4,5,97、如图,已知为的外角,,,那么的度数是( )A.30° B.40° C.50° D.60°8、如图,直线l1、l2分别与△ABC的两边AB、BC相交,且l1∥l2,若∠B=35°,∠1=105°,则∠2的度数为( )A.45° B.50° C.40° D.60°9、下列长度的三条线段能组成三角形的是( )A.3 4 8 B.4 4 10 C.5 6 10 D.5 6 1110、已知△ABC的内角分别为∠A、∠B、∠C,下列能判定△ABC是直角三角形的条件是( )A.∠A=2∠B=3∠C B.∠C=2∠B C.∠A+∠B=∠C D.∠A:∠B:∠C= =3:4:5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知a,b,c是的三条边长,化简的结果为_______.2、如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,设∠A=.则∠A1=_______(用含的式子表示).3、△ABC中,已知∠C=90°,∠B=55°,则∠A=_____.4、如图,AE是△ABC的中线,BF是△ABE的中线,若△ABC的面积是20cm2,则S△ABF=_____cm2.5、ABC的三边长为a、b、c,且a、b满足a2﹣4a+4+=0,则c的取值范围是______.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,AD是△ABC的角平分线,DE∥AC,DE交AB于点E,DF∥AB,DF交AC于点F.求证:DA平分∠EDF.2、如图,在△ABC中,∠ABC=30°,∠C=80°,AD是△ABC的角平分线,BE是△ABD中AD边上的高,求∠ABE的度数.3、阅读填空,将三角尺(△MPN,∠MPN=90°)放置在△ABC上(点P在△ABC内),如图①所示,三角尺的两边PM、PN恰好经过点B和点C,我们来研究∠ABP与∠ACP是否存在某种数量关系.(1)特例探索:若∠A=50°,则∠PBC+∠PCB= 度,∠ABP+∠ACP= 度.(2)类比探索:∠ABP、∠ACP、∠A的关系是 .(3)变式探索:如图②所示,改变三角尺的位置,使点P在△ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则∠ABP、∠ACP、∠A的关系是 .4、在中,平分平分,求的度数.5、如图,在中,为的高,为的角平分线,交于点G,,,求的大小. -参考答案-一、单选题1、C【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:设第三边长为xcm,根据三角形的三边关系可得:3-2<x<3+2,解得:1<x<5,只有C选项在范围内.故选:C.【点睛】本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.2、C【解析】【分析】根据三角形三条边的关系计算即可.【详解】解:A. ∵2+4=6,∴,,不能组成三角形;B. ∵2+5<9,∴,,不能组成三角形;C. ∵7+8>10,∴,,能组成三角形;D. ∵6+6<13,∴,,不能组成三角形;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.3、C【解析】【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.∵c是奇数,∴c=3或5或7,有3个值.则对应的三角形有3个.故选:C.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.4、B【解析】【分析】直接根据三角形中线定义解答即可.【详解】解:∵是的中线,,∴BM= ,故选:B.【点睛】本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.5、D【解析】【分析】过D作DF⊥AC于F,根据角平分线性质求出DF=DE=2,根据S△ADB+S△ADC=7和三角形面积公式求出即可.【详解】解:过D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,∴DE=DF=2,∵S△ABC=7,∴S△ADB+S△ADC=7,∴×AB×DE+×AC×DF=7,∴×4×2+×AC×2=7,解得:AC=3.故选D .【点睛】本题考查了角平分线的性质,三角形面积公式的应用,能正确作出辅助线是解此题的关键,注意:角平分线上的点到角两边的距离相等.6、C【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,得,A、3+4=7<8,不能组成三角形,该选项不符合题意;B、5+6=11,不能够组成三角形,该选项不符合题意;C、5+6=11>10,能够组成三角形,该选项符合题意;D、4+5=9,不能够组成三角形,该选项不符合题意.故选:C.【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.7、B【解析】【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.8、C【解析】【分析】根据三角形内角和定理球场∠3的度数,利用平行线的性质求出答案.【详解】解:∵∠B=35°,∠1=105°,∴∠3=180-∠1-∠B=,∵l1∥l2,∴∠2=∠3=,故选:C..【点睛】此题考查三角形内角和定理,两直线平行内错角相等的性质,熟记三角形内角和等于180度及平行线的性质并熟练解决问题是解题的关键.9、C【解析】【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A.∵3+4<8,∴不能组成三角形,故本选项不符合题意;B.∵4+4<10,∴不能组成三角形,故本选项不符合题意;C.∵5+6>10,∴能组成三角形,故本选项符合题意;D.∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.10、C【解析】【分析】根据三角形内角和定理依次计算判断.【详解】解:A、设∠C=2x,则∠B=3x,∠A=6x,∵,∴,解得,∴∠A=6x=,∴△ABC不是直角三角形,故该选项不符合题意;B、当∠C=20°,∠B=10°时符合题意,但是无法判断△ABC是直角三角形,故该选项不符合题意;C、∵∠A+∠B=∠C,,∴,即△ABC是直角三角形,故该选项符合题意;D、设∠A=3x,∠B=4x,∠C=5x,∵,∴,解得,∴,∴△ABC不是直角三角形,故该选项不符合题意;故选:C.【点睛】此题考查了三角形内角和定理,熟记三角形内角和为180度并应用是解题的关键.二、填空题1、2b【解析】【分析】由题意根据三角形三边关系得到a+b-c>0,b-a-c<0,再去绝对值,合并同类项即可求解.【详解】解:∵a,b,c是的三条边长,∴a+b-c>0,a-b-c<0,∴|a+b-c|+|a-b-c|=a+b-c-a+b+c=2b.故答案为:2b.【点睛】本题考查的是三角形的三边关系以及去绝对值和整式加减运算,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.2、【解析】【分析】根据角平分线的定义、三角形的外角的性质计算即可.【详解】∵∠ABC与∠ACD的平分线交于A1点,∴∠A1BC=∠ABC,∠A1CD=∠ACD,∵∠A=∠ACD-∠ABC=∴∠A1=∠A1CD-∠A1BC=(∠ACD-∠ABC)=∠A=,故答案为:.【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.3、35°【解析】【分析】根据三角形的内角和定理列式计算即可得解.【详解】∵∠C=90°,∠B=55°,∴∠A=180°-∠B-∠C=180°-55°-90°=35°.故答案为:35°.【点睛】本题考查了三角形的内角和定理,是基础题,熟记定理并准确计算是解题的关键.4、5【解析】【分析】利用三角形的中线把三角形分成面积相等的两个三角形进行解答.【详解】解:∵AE是△ABC的中线,BF是△ABE的中线,∴S△ABF=S△ABC=×20=5cm2.故答案为:5.【点睛】本题考查了三角形的面积,能够利用三角形的中线把三角形分成面积相等的两个三角形的性质求解是解题的关键.5、2<c<6【解析】【分析】根据非负数的性质得到,,再根据三角形三边的关系得.【详解】解:,∴,,,所以,故答案为:【点睛】本题主要考查了三角形的三边关系,以及非负数的性质,解题的关键是求出,的值,熟练掌握三角形的三边关系.三、解答题1、见解析【解析】【分析】根据角平分线的定义可得∠DAE=∠DAF,再根据两直线平行,内错角相等可得∠ADE=∠DAF,∠ADF=∠DAE,从而得解.【详解】解:∵DE∥AC,∴∠ADE=∠DAF,∵DF∥AB,∴∠ADF=∠DAE,又∵AD是△ABC的角平分线,∴∠DAE=∠DAF,∴∠ADE=∠ADF. DA平分∠EDF.【点睛】本题综合考查了平行线和角平分线的性质,注意等量代换的应用.2、55°【解析】【分析】先根据三角形内角和定理及角平分线的性质求出∠BAD度数,由AE⊥BE可求出∠AEB=90°,再由三角形的内角和定理即可解答.【详解】解:∵∠ABC=30°,∠C=80°,∴∠BAC=180°-30°-80°=70°,∵AD是∠BAC的平分线,∴∠BAD=×70°=35°,∵AE⊥BE,∴∠AEB=90°,∴∠ABE=180°-∠AEB-∠BAE=180°-90°-35°=55°.【点睛】本题考查的是角平分线的定义,高的定义及三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.3、(1)90,40 ;(2)∠ABP+∠ACP+∠A=90°;(3)∠A+∠ACP-∠ABP=90°.【解析】【分析】(1)由三角形内角和为180°计算和中的角的关系即可.(2)由(1)所得即可得出∠ABP、∠ACP、∠A的关系为∠ABP+∠ACP+∠A=90°.(3)由三角形外角的性质即可推出∠A+∠ACP-∠ABP=90°.【详解】(1)在中∵∠MPN=90°∴∠PBC+∠PCB=180°-∠MPN=180°-90°=90°在中∵∠A+∠ABC+∠ACB=180°又∵∠ABC=∠PBC+∠ABP,∠ACB=∠ACP+∠BCP∴∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°∵∠PBC+∠PCB=90°,∠A=50°∴∠ABP +∠ACP=180°-90°-50°=40°(2)由(1)问可知∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°又∵∠PBC+∠PCB=90°∴∠A+∠ABP +∠ACP=180°-(∠PBC+∠PCB)=180°-90°=90°(3)如图所示,设PN与AB交于点H∵∠A+∠ACP=∠AHP又∵∠ABP+∠MPN =∠AHP∴∠A+∠ACP=∠ABP+∠MPN又∵∠MPN =90°∴∠A+∠ACP =90°+∠ABP∴∠A+∠ACP-∠ABP=90°.【点睛】本题考查了三角形的性质以及三角尺的角度计算问题,三角板的角度分别为90°,45°,45°;90°,60°,30°两种直角三角尺,三角形内角和是180°,三角形的一个外角等于与它不相邻的两个内角的和.4、【解析】【分析】根据外角的性质,求得,根据角平分线的定义可得,根据三角形的内角和求得,角平分线的性质可得,根据三角形内角和即可求解.【详解】解:∵,∴,∵平分∴,由三角形内角和的性质可得,,∵平分∴,由三角形内角和的性质可得,.【点睛】此题考查了三角形内角和的性质、外角的性质以及角平分线的定义,解题的关键是掌握并灵活运用相关性质进行求解.5、.【解析】【分析】先由直角三角形两锐角互余得到∠B=40°,在三角形△ABC 中,由内角和定理求得∠BAE=30°,由角平分线定义得出 ∠BAC=60°,即可求得∠ACD .【详解】解:为的高,..在中,.为的角平分线,..【点睛】此题考查三角形内角和定理、角平分线定义和直角三角形两锐角互余等,掌握定义和定理是解答此题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试达标测试,共21页。试卷主要包含了如图,,,,则的度数是,如图,在中,AD等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试同步达标检测题,共23页。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试复习练习题,共23页。