冀教版七年级下册第九章 三角形综合与测试课时作业
展开
这是一份冀教版七年级下册第九章 三角形综合与测试课时作业,共23页。试卷主要包含了如图,图形中的的值是,定理等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )A.1个 B.2个 C.3个 D.4个2、将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=45°,那么∠BAF的大小为( )A.15° B.10° C.20° D.25°3、下列图形中,不具有稳定性的是( )A. B.C. D.4、利用直角三角板,作的高,下列作法正确的是( )A. B.C. D.5、如图,图形中的的值是( )A.50 B.60 C.70 D.806、人字梯中间一般会设计一“拉杆”,这样做的道理是( )A.两点之间线段最短 B.三角形的稳定性C.两点确定一条直线 D.垂线段最短7、以下各组线段长为边,能组成三角形的是( )A.,, B.,, C.,, D.,,8、下列长度的三条线段能组成三角形的是( )A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,79、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.证法1:如图,∵∠A=70°,∠B=63°,且∠ACD=133°(量角器测量所得)又∵133°=70°+63°(计算所得)∴∠ACD=∠A+∠B(等量代换).证法2:如图,∵∠A+∠B+∠ACB=180°(三角形内角和定理),又∵∠ACD+∠ACB=180°(平角定义),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).∴∠ACD=∠A+∠B(等式性质).下列说法正确的是( )A.证法1用特殊到一般法证明了该定理B.证法1只要测量够100个三角形进行验证,就能证明该定理C.证法2还需证明其他形状的三角形,该定理的证明才完整D.证法2用严谨的推理证明了该定理10、在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,则∠BOC等于( )A.65° B.80° C.115° D.50°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,△ABC≌△DCB,∠DBC=36°,则∠AOB=_____.2、如图,△ABC的面积等于35,AE=ED,BD=3DC,则图中阴影部分的面积等于 _______ 3、如图,在△ABC中,点D为BC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.4、△ABC中,已知∠C=90°,∠B=55°,则∠A=_____.5、ABC的三边长为a、b、c,且a、b满足a2﹣4a+4+=0,则c的取值范围是______.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠AEC的度数.2、如图,BD⊥AC,∠1=∠2,∠C=66°,求∠ABC的度数.3、如图,在同一平面内有四个点A、B、C、D,请按要求完成下列问题.(注:此题作图不要求写出画法和结论)(1)分别连接AB、AD,作射线AC,作直线BD与射线AC相交于点O;(2)我们容易判断出线段AB+AD与BD的数量关系是 ,理由是 .4、用无刻度的直尺作图,保留作图痕迹. (1)在图1中,BD是△ABC的角平分线,作△ABC的平分内角∠BCA的角平分线;(2)在图2中,AD是∠BAC的角平分线,作△ABC的∠BCA相邻的外角的角平分线. 5、已知直线AB∥CD,EF是截线,点M在直线AB、CD之间.(1)如图1,连接GM,HM.求证:;(2)如图2,在的角平分线上取两点M、Q,使得.请直接写出与之间的数量关系;(3)如图3,若射线GH平分,点N在MH的延长线上,连接GN,若,,求的度数. -参考答案-一、单选题1、C【解析】【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.∵c是奇数,∴c=3或5或7,有3个值.则对应的三角形有3个.故选:C.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.2、A【解析】【分析】利用DE∥AF,得∠CDE=∠CFA=45°,结合∠CFA=∠B+∠BAF计算即可.【详解】∵DE∥AF,∴∠CDE=∠CFA=45°,∵∠CFA=∠B+∠BAF,∠B=30°,∴∠BAF=15°,故选A.【点睛】本题考查了平行线的性质,三角形外角的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.3、B【解析】【分析】由三角形的稳定性的性质判定即可.【详解】A选项为三角形,故具有稳定性,不符合题意,故错误;B选项为四边形,非三角形结构,故不具有稳定性,符合题意,故正确;C选项为三个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误;D选项为两个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误.故选B.【点睛】本题考查了三角形的稳定性,如果三角形的三条边固定,那么三角形的形状和大小就完全确定了,三角形的这个特征,叫做三角形的稳定性注意①要看图形是否具有稳定性,关键在于它的结构是不是三角形结构②除了三角形外,其他图形都不具备稳定性,因此在生产建设中,三角形的应用非常广泛.4、D【解析】【分析】由题意直接根据高线的定义进行分析判断即可得出结论.【详解】解:A、B、C均不是高线.故选:D.【点睛】本题考查的是作图-基本作图,熟练掌握三角形高线的定义即过一个顶点作垂直于它对边所在直线的线段,叫三角形的高线是解答此题的关键.5、B【解析】【分析】根据三角形外角的性质:三角形一个外角的度数等于与其不相邻的两个内角的度数和进行求解即可.【详解】解:由题意得: ∴,∴,故选B.【点睛】本题主要考查了三角形外角的性质,解一元一次方程,熟知三角形外角的性质是解题的关键.6、B【解析】【分析】首先要考虑梯子中间设置“拉杆”的原因,是为了让梯子更加稳固,而更加稳固的原因是“拉杆”与梯子两边形成了三角形.【详解】人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加梯子的稳定性.故选:B.【点睛】本题考查三角形的稳定性,善于从生活中发现数学原理是解决本题的关键.7、B【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2<4,不能组成三角形,故不符合题意;B、4+6>8,能组成三角形,故符合题意;C、5+6<12,不能够组成三角形,故不符合题意;D、3+3=6,不能组成三角形,故不符合题意.故选:B.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.8、C【解析】【分析】根据三角形的三边关系,逐项判断即可求解.【详解】解:A、因为 ,所以不能组成三角形,故本选项不符合题意;B、因为 ,所以不能组成三角形,故本选项不符合题意;C、因为 ,所以能组成三角形,故本选项符合题意;D、因为 ,所以不能组成三角形,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.9、D【解析】【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.10、C【解析】【分析】根据题意画出图形,求出∠ABC+∠ACB =130°,根据角平分线的定义得到∠CBD=∠ABC,∠ECB=∠ACB,再根据三角形内角和定理和角的代换即可求解.【详解】解:如图,∵∠A=50°,∴∠ABC+∠ACB=180°-∠A=130°,∵BD、CE分别是∠ABC、∠ACB的平分线,∴∠CBD=∠ABC,∠ECB=∠ACB,∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- (∠ABC+∠ACB)=180°- ×130°=115°.故选:C【点睛】本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.二、填空题1、72°##72度【解析】【分析】由全等三角形的对应角相等和三角形外角定理求解.【详解】解:如图△ABC≌△DCB,∠DBC=36°,∠ACB=∠DBC=36°,∠AOB=∠ACB+∠DBC=36°+36°=72°故答案为:72°.【点睛】本题考查全等三角形对应角相等、三角形的一个外角等于与它不相邻的两个内角和,掌握相关知识是解题关键.2、15【解析】【分析】连接DF,根据AE=ED,BD=3DC,可得 ,, ,,然后设△AEF的面积为x,△BDE的面积为y,则,,,,再由△ABC的面积等于35,即可求解.【详解】解:如图,连接DF, ∵AE=ED,∴ ,,∵BD=3DC,∴ ,设△AEF的面积为x,△BDE的面积为y,则,,,,∵△ABC的面积等于35,∴ ,解得: .故答案为:15【点睛】本题主要考查了与三角形中线有关的面积问题,根据题意得到 ,, ,是解题的关键.3、30°##30度【解析】【分析】根据三角形的外角的性质,即可求解.【详解】解:∵ ,∴ ,∵∠ACD=75°,∠A=45°,∴ .故答案为:30°【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.4、35°【解析】【分析】根据三角形的内角和定理列式计算即可得解.【详解】∵∠C=90°,∠B=55°,∴∠A=180°-∠B-∠C=180°-55°-90°=35°.故答案为:35°.【点睛】本题考查了三角形的内角和定理,是基础题,熟记定理并准确计算是解题的关键.5、2<c<6【解析】【分析】根据非负数的性质得到,,再根据三角形三边的关系得.【详解】解:,∴,,,所以,故答案为:【点睛】本题主要考查了三角形的三边关系,以及非负数的性质,解题的关键是求出,的值,熟练掌握三角形的三边关系.三、解答题1、∠AEC=115°【解析】【分析】利用三角形的内角和定理求解 再利用三角形的高的含义求解 再结合角平分线的定义求解 再利用三角形的内角和定理可得答案.【详解】解: ∠BAC=80°,∠B=60°, AD⊥BC, AE平分∠DAC, 【点睛】本题考查的是三角形的高,角平分线的含义,三角形的内角和定理的应用,熟练的运用三角形的高与角平分线的定义结合三角形的内角和定理得到角与角之间的关系是解本题的关键.2、69°【解析】【分析】利用三角形的内角和定理先求出∠2、∠CBD的度数,再利用角的和差关系求出∠ABC的度数.【详解】解:∵BD⊥AC,∴∠ADB=∠BDC=90°.∵∠1=∠2,∠C=66°,∴∠1=∠2=∠ADB=45°,∠CBD=∠ADB﹣∠C=24°.∴∠ABC=∠2+∠CBD=45°+24°=69°.【点睛】本题考查了三角形的内角和定理,掌握三角形的内角和等于180°是解决本题的关键.3、(1)见解析;(2)AB+AD>BD,在三角形中,两边之和大于第三边.【解析】【分析】(1)根据直线,射线,线段的作图方法作图即可;(2)根据三角形三边的关系:两边之和大于第三边进行求解即可.【详解】解:(1)如图所示,即为所求;(2)我们容易判断出线段AB+AD与BD的数量关系是:AB+AD>BD,理由是:在三角形中,两边之和大于第三边,故答案为:AB+AD>BD,在三角形中,两边之和大于第三边.【点睛】本题主要考查了三角形三边的关系,作直线,射线和线段,解题的关键在于能够熟练掌握相关知识进行求解.4、(1)见解析;(2)见解析.【解析】【分析】(1)作∠BAC的平分线交BD于点O,作射线CO交AB于E,线段CE即为所求;(2)作△ABC的∠ABC的外角的平分线交AD与D,作射线CD,射线CD即为所求.【详解】(1)如图1,线段CE为所求; (2)如图2,线段CD为所求. 【点睛】本题主要考查了基本作图、三角形的外角、三角形的角平分线等知识点,理解三角形的内角平分线交于一点成为解答本题的关键.5、 (1)见解析(2)∠GQH+∠GMH=180°,理由见解析(3)60°【解析】【分析】(1)过点M作MI∥AB交EF于点I,可得∠AGM=∠GMI,再由AB∥CD,可得MI∥CD,从而得到∠CHM=∠HMI,即可求证;(2)过点M作MP∥AB交EF于点P,同(1)可得到∠PMH=∠CHM,∠GMP=∠AGM,再由MH平分∠GHC,可得∠PHM=∠CHM,从而得到∠PHM=∠PMH,再由,可得∠HGQ=∠GMP,从而得到∠GMH=∠HGQ+∠PHM,然后根据三角形的内角和定理,即可求解;(3)过点M作MK∥AB交EF于点K,设 ,可得 ,同(1),可得∠GMH=∠GMK+HMK= ,再由,可得,然后根据三角形的内角和定理,可得 ,再由AB∥CD,可得∠AGH+∠CHG=180°,即可求解.(1)证明:如图,过点M作MI∥AB交EF于点I,∵MI∥AB,∴∠AGM=∠GMI,∵AB∥CD,∴MI∥CD,∴∠CHM=∠HMI,∴∠GMH=∠HMI +∠GMI= ∠AGM +∠CHM;(2)解:∠GQH+∠GMH=180°,理由如下:如图,过点M作MP∥AB交EF于点P,∵MP∥AB,∴∠GMP=∠AGM,∵AB∥CD,∴MP∥CD,∴∠PMH=∠CHM,∵MH平分∠GHC,∴∠PHM=∠CHM,∴∠PHM=∠PMH,∵,∴∠HGQ=∠GMP,∵∠GMH=∠GMP+∠PMH,∴∠GMH=∠HGQ+∠PHM,∵∠GQH+∠HGQ+∠PHM=180°,∴∠GQH+∠GMH=180°(3)解:如图,过点M作MK∥AB交EF于点K,设 ,∵GH平分∠BGM,∴ ,∵MK∥AB,∴ ,∵AB∥CD,∴MK∥CD,∴∠HMK=∠CHM,∴∠GMH=∠GMK+HMK= ,∵,∴,即,∵∠GMH+∠N+∠MGN=180°,∴ ,解得: ,∵AB∥CD, ∴∠AGH+∠CHG=180°,即 ,∴ ,∴∠MHG=60°.【点睛】本题主要考查了平行的判定和性质,三角形的内角和定理,角平分线的定义,做适当辅助线,构造平行线,并熟练掌握平行的判定和性质定理,三角形的内角和定理,角平分线的定义是解题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试当堂检测题,共23页。试卷主要包含了如图,,如图,,,则的度数是等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试复习练习题,共21页。试卷主要包含了如图,在中,若点使得,则是的,如图,在ABC中,点D等内容,欢迎下载使用。
这是一份数学七年级下册第九章 三角形综合与测试同步练习题,共22页。试卷主要包含了若一个三角形的三个外角之比为3等内容,欢迎下载使用。