![2021-2022学年冀教版七年级数学下册第九章 三角形课时练习试题(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12767315/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版七年级数学下册第九章 三角形课时练习试题(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12767315/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版七年级数学下册第九章 三角形课时练习试题(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12767315/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版七年级下册第九章 三角形综合与测试当堂检测题
展开
这是一份冀教版七年级下册第九章 三角形综合与测试当堂检测题,共19页。
冀教版七年级数学下册第九章 三角形课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,于点,于点,于点,下列关于高的说法错误的是( )A.在中,是边上的高 B.在中,是边上的高C.在中,是边上的高 D.在中,是边上的高2、如图, AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )A.6 B.5 C.4 D.33、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=( )A.30° B.40° C.50° D.60°4、将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=45°,那么∠BAF的大小为( )A.15° B.10° C.20° D.25°5、若一个三角形的两边长分别为3和8,则第三边长可能是 ( )A.4 B.5 C.8 D.116、如图,将△ABC沿着DE减去一个角后得到四边形BCED,若∠BDE和∠DEC的平分线交于点F,∠DFE=α,则∠A的度数是( )A.180°﹣α B.180°﹣2α C.360°﹣α D.360°﹣2α7、以下各组线段长为边,能组成三角形的是( )A.,, B.,, C.,, D.,,8、三根小木棒摆成一个三角形,其中两根木棒的长度分别是和,那么第三根小木棒的长度不可能是( )A. B. C. D.9、如图,把△ABC绕顶点C按顺时针方向旋转得到△A′B′C′,当A′B′⊥AC,∠A=50°,∠A′CB=115°时,∠B′CA的度数为( )A.30° B.35° C.40° D.45°10、一把直尺与一块三角板如图放置,若,则( )A.120° B.130° C.140° D.150°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在△ABC中,已知∠B是∠A的2倍,∠C比∠A大20°,则∠A=_____________.2、两根长度分别为3,5的木棒,若想钉一个三角形木架,第三根木棒的长度可以是________.(写一个值即可)3、如图:中,,,于D,CE平分,于F,则______°.4、如图,∠ABD=80°,∠C=38°,则∠D=___度.5、ABC的三边长为a、b、c,且a、b满足a2﹣4a+4+=0,则c的取值范围是______.三、解答题(5小题,每小题10分,共计50分)1、请解答下列各题:(1)阅读并回答:科学实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等.如图1,一束平行光线与射向一个水平镜面后被反射,此时,.①由条件可知:,依据是 ,,依据是 .②反射光线与平行,依据是 .(2)解决问题:如图2,一束光线射到平面镜上,被反射到平面镜上,又被镜反射,若射出的光线平行于,且,则 ; .2、如图,将一副直角三角板的直角顶点C叠放在一起.(1)如图(1),若∠DCE=33°,则∠BCD= ,∠ACB= .(2)如图(1),猜想∠ACB与∠DCE的大小有何特殊关系?并说明理由.(3)如图(2),若是两个同样的直角三角板60°锐角的顶点A重合在一起,则∠DAB与∠CAE的数量关系为 .3、已知:如图,AD是△ABC的角平分线,DE∥AC,DE交AB于点E,DF∥AB,DF交AC于点F.求证:DA平分∠EDF.4、如图所示,四边形ABCD中,ADC的角平分线DE与BCD的角平分线CA相交于E点,已知:ACB=32°,CDE=58°.(1)求DEC的度数;(2)试说明直线5、若AE是边BC上的高,AD是的平分线且交BC于点D.若,,分别求和的度数. -参考答案-一、单选题1、C【解析】【详解】解:A、在中,是边上的高,该说法正确,故本选项不符合题意;B、在中,是边上的高,该说法正确,故本选项不符合题意;C、在中,不是边上的高,该说法错误,故本选项符合题意;D、在中,是边上的高,该说法正确,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.2、D【解析】【分析】过D作DF⊥AC于F,根据角平分线性质求出DF=DE=2,根据S△ADB+S△ADC=7和三角形面积公式求出即可.【详解】解:过D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,∴DE=DF=2,∵S△ABC=7,∴S△ADB+S△ADC=7,∴×AB×DE+×AC×DF=7,∴×4×2+×AC×2=7,解得:AC=3.故选D .【点睛】本题考查了角平分线的性质,三角形面积公式的应用,能正确作出辅助线是解此题的关键,注意:角平分线上的点到角两边的距离相等.3、A【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.【详解】∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM−∠CBP=50°−20°=30°,故选:A.【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.4、A【解析】【分析】利用DE∥AF,得∠CDE=∠CFA=45°,结合∠CFA=∠B+∠BAF计算即可.【详解】∵DE∥AF,∴∠CDE=∠CFA=45°,∵∠CFA=∠B+∠BAF,∠B=30°,∴∠BAF=15°,故选A.【点睛】本题考查了平行线的性质,三角形外角的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.5、C【解析】【分析】直接利用三角形三边关系得出第三边的取值范围,进而得出答案.【详解】解:∵一个三角形的两边长分别为3和8,∴5<第三边长<11,则第三边长可能是:8.故选:C.【点睛】此题主要考查了三角形的三边关系,正确得出第三边的取值范围是解题关键.6、B【解析】【分析】根据∠DFE=α得到∠FDE+∠FED,再根据角平分线的性质求出∠BDE+∠CED=360°-2α,利用外角的性质得到∠ADE+∠AED=2α,最后根据三角形内角和求出结果.【详解】解:∵∠DFE=α,∴∠FDE+∠FED=180°-α,由角平分线的定义可知:∠BDF=∠FDE,∠CEF=∠FED,∴∠BDE+∠CED=2∠FDE+2∠FED=360°-2α,∴∠ADE+∠AED=180°-∠BDE +180°-∠CED=2α,∴∠A=180°-(∠ADE+∠AED)=180°-2α,故选B.【点睛】本题考查了角平分线的定义,三角形内角和,三角形外角的性质,解题的关键是利用角平分线得到相等的角,根据内角和进行计算.7、B【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2<4,不能组成三角形,故不符合题意;B、4+6>8,能组成三角形,故符合题意;C、5+6<12,不能够组成三角形,故不符合题意;D、3+3=6,不能组成三角形,故不符合题意.故选:B.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.8、D【解析】【分析】设第三根木棒长为x厘米,根据三角形的三边关系可得8﹣5<x<8+5,确定x的范围即可得到答案.【详解】解:设第三根木棒长为x厘米,由题意得:8﹣5<x<8+5,即3<x<13,故选:D.【点睛】此题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.9、B【解析】【分析】由旋转的性质可得∠A′=∠A=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠A′CA=40°,即可求解.【详解】解:根据旋转的性质可知∠A′=∠A=50°,∠BCB'=∠ACA',∴∠A′CA=90°﹣50°=40°,∴∠BCB′=∠A′CA=40°,∴∠B′CA=∠A′CB﹣∠A′CA﹣∠BCB′=115°﹣40°﹣40°=35°.故选:B.【点睛】本题主要考查了旋转的性质,三角形内角和定理的应用,解决这类问题要找准旋转角、以及旋转后对应的线段和角.10、B【解析】【分析】由BC∥ED,得到∠2=∠CBD,由三角形外角的性质得到∠CBD=∠1+∠A=130°,由此即可得到答案.【详解】解:如图所示,由题意得:∠A=90°,BC∥EF,∴∠2=∠CBD,又∵∠CBD=∠1+∠A=130°,∴∠2=130°,故选B.【点睛】本题主要考查了三角形外角的性质,平行线的性质,熟知相关知识是解题的关键.二、填空题1、40°##40度【解析】【分析】根据已知得出∠B=2∠A,∠C=∠A+20°,代入∠A+∠B+∠C=180°得出方程∠A+2∠A+∠A+20°=180°,求出即可.【详解】解:∵∠B是∠A的2倍,∠C比∠A大20°,∴∠B=2∠A,∠C=∠A+20°,∵∠A+∠B+∠C=180°,∴∠A+2∠A+∠A+20°=180°,∴∠A=40°,故答案为:40°.【点睛】本题考查了三角形内角和定理的应用,注意:三角形的内角和等于180°,用了方程思想.2、4(答案不唯一)【解析】【分析】根据三角形中“两边之和大于第三边,两边之差小于第三边”,进行分析得到第三边的取值范围;再进一步找到符合条件的数值.【详解】解:根据三角形的三边关系,得第三边应大于两边之差,即;而小于两边之和,即,即第三边,故第三根木棒的长度可以是4.故答案为:4(答案不唯一).【点睛】本题主要考查了三角形三边关系,熟练掌握两边之和大于第三边,两边之差小于第三边是解题的关键.3、804、5、2<c<6【解析】【分析】根据非负数的性质得到,,再根据三角形三边的关系得.【详解】解:,∴,,,所以,故答案为:【点睛】本题主要考查了三角形的三边关系,以及非负数的性质,解题的关键是求出,的值,熟练掌握三角形的三边关系.三、解答题1、(1)①两直线平行,同位角相等;等量代换.②同位角相等,两直线平行.(2)84°;90°;【解析】【分析】(1)根据平行线的判定与性质逐一求解可得;(2)根据入射角等于反射角得出∠1=∠4,∠5=∠7,求出∠6,根据平行线性质即可求出∠2,求出∠5,根据三角形内角和求出∠3即可.【详解】解:(1)①由条件可知:∠1=∠3,依据是:两直线平行,同位角相等;∠2=∠4,依据是:等量代换;②反射光线BC与EF平行,依据是:同位角相等,两直线平行;故答案为:①两直线平行,同位角相等;等量代换.②同位角相等,两直线平行.(2)如图,∵∠1=42°,∴∠4=∠1=42°,∴∠6=180°42°42°=96°,∵m∥n,∴∠2+∠6=180°,∴∠2=84°,∴∠5=∠7=,∴∠3=180°48°42°=90°.故答案为:84°;90°;【点睛】本题考查了平行线的性质和判定,三角形的内角和定理的应用,熟练掌握平行线的判定与性质是解题的关键.2、(1)57°,147°;(2)∠ACB=180°-∠DCE,理由见解析;(3)∠DAB+∠CAE=120°【解析】【分析】(1)根据角的和差定义计算即可.(2)利用角的和差定义计算即可.(3)利用特殊三角板的性质,角的和差定义即可解决问题.【详解】解:(1)由题意,;;故答案为:57°,147°. (2)∠ACB=180°-∠DCE, 理由如下:∵ ∠ACE=90°-∠DCE,∠BCD=90°-∠DCE, ∴ ∠ACB=∠ACE+∠DCE+∠BCD=90°-∠DCE+∠DCE+90°-∠DCE=180°-∠DCE. (3)结论:∠DAB+∠CAE=120°.理由如下:∵∠DAB+∠CAE=∠DAE+∠CAE+∠BAC+∠CAE=∠DAC+∠EAB,又∵∠DAC=∠EAB=60°,∴∠DAB+∠CAE=60°+60°=120°.故答案为:∠DAB+∠CAE=120°.【点睛】本题考查三角形的内角和定理,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3、见解析【解析】【分析】根据角平分线的定义可得∠DAE=∠DAF,再根据两直线平行,内错角相等可得∠ADE=∠DAF,∠ADF=∠DAE,从而得解.【详解】解:∵DE∥AC,∴∠ADE=∠DAF,∵DF∥AB,∴∠ADF=∠DAE,又∵AD是△ABC的角平分线,∴∠DAE=∠DAF,∴∠ADE=∠ADF. DA平分∠EDF.【点睛】本题综合考查了平行线和角平分线的性质,注意等量代换的应用.4、(1)90°;(2)见解析【解析】【分析】(1)根据三角形内角和定理即可求解;(2)首先求得∠ADC的度数和∠DCB的度数,根据同旁内角互补,两直线平行即可证得.【详解】解:(1)∵AC是BCD的平分线∴ ∵ ∴∠DEC=180°-∠ACD-∠CDE=180°-32°-58°=90°;(2)∵DE平分∠ADC,CA平分∠BCD∴∠ADC=2∠CDE=116°,∠BCD=2∠ACD=64°∵∠ADC+∠BCD=116°+64°=180°∴【点睛】本题主要考查了角平分线,平行线的判定以及三角形内角和定理,熟练掌握相关性质和定理是解答本题的关键.5、;【解析】【分析】根据△AEC的内角和定理可得:,根据角平分线的性质可得,根据△ABC的内角和定理可得∠BAC,又因为,,即可得解.【详解】解:∵AE是边BC上的高∴∴在中,有又∵∴∵AD是的平分线∴∵在中,有已知,∴∴∴【点睛】本题考查了三角形内角和定理及角平分线的性质,熟悉这些知识点,灵活应用等量代换是解决本题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课时练习,共22页。试卷主要包含了如图,直线l1,如图,等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试课时训练,共22页。试卷主要包含了如图,是的中线,,则的长为,如图,,,,则的度数是等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试课时作业,共21页。