初中数学冀教版七年级下册第九章 三角形综合与测试课后练习题
展开冀教版七年级数学下册第九章 三角形章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,于点,于点,于点,下列关于高的说法错误的是( )
A.在中,是边上的高 B.在中,是边上的高
C.在中,是边上的高 D.在中,是边上的高
2、如图,点B、G、C在直线FE上,点D在线段AC上,下列是△ADB的外角的是( )
A.∠FBA B.∠DBC C.∠CDB D.∠BDG
3、以下列各组线段为边,能组成三角形的是( )
A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm
4、如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是( )
A.BE是△ABD的中线 B.BD是△BCE的角平分线
C.∠1=∠2=∠3 D.S△AEB=S△EDB
5、如图,四边形ABCD是梯形,,与的角平分线交于点E,与的角平分线交于点F,则与的大小关系为( )
A. B. C. D.无法确定
6、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为( )
A. B. C. D.
7、如图,在△ABC中,AD是△ABC的中线,△ABD的面积为3,则△ABC的面积为( )
A.8 B.7 C.6 D.5
8、如图,直线l1l2,被直线l3、l4所截,并且l3⊥l4,∠1=46°,则∠2等于( )
A.56° B.34° C.44° D.46°
9、如图,在中,,,将沿直线翻折,点落在点的位置,则的度数是( )
A.30° B.45° C.60° D.75°
10、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于( )
A.180° B.210° C.360° D.270°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、ABC的三边长为a、b、c,且a、b满足a2﹣4a+4+=0,则c的取值范围是______.
2、已知在△ABC中,∠A+∠B<∠C,则△ABC是______三角形.(填“直角”、“锐角”或“钝角”)
3、在△ABC中,已知∠B是∠A的2倍,∠C比∠A大20°,则∠A=_____________.
4、如图,在△ABC中,点D为BC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.
5、在中,,则的取值范围是_______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,ADEF,.请从以下三个条件:①平分,②,③中选择一个作为条件,使DGAB,你选的条件是______(填写序号).并说明理由.
2、已知:直线AB∥CD,一块三角板EFH,其中∠EFH=90°,∠EHF=60°.
(1)如图1,三角板EFH的顶点H落在直线CD上,并使EH与直线AB相交于点G,若∠2=2∠1,求∠1的度数;
(2)如图2,当三角板EFH的顶点F落在直线AB上,且顶点H仍在直线CD上时,EF与直线CD相交于点M,试确定∠E、∠AFE、∠MHE的数量关系;
(3)如图3,当三角板EFH的顶点F落在直线AB上,顶点H在AB、CD之间,而顶点E恰好落在直线CD上时得△EFH,在线段EH上取点P,连接FP并延长交直线CD于点T,在线段EF上取点K,连接PK并延长交∠CEH的角平分线于点Q,若∠Q﹣∠HFT=15°,且∠EFT=∠ETF,求证:PQ∥FH.
3、上小学时,我们已学过三角形三个内角的和为180°.定义:如果一个三角形的两个内角与满足.那么我们称这样的三角形为“准互余三角形”.
(1)若是“准互余三角形”,,,则______;
(2)若是直角三角形,.
①如图,若AD是的平分线,请你判断是否为“准互余三角形”?并说明理由.
②点E是边BC上一点,是“准互余三角形”,若,则______.
4、如图,在△ABC中,点D为∠ABC的平分线BD上一点,连接AD,过点D作EF∥BC交AB于点E,交AC于点F.
(1)如图1,若AD⊥BD于点D,∠BEF=120°,求∠BAD的度数;
(2)如图2,若∠ABC=α,∠BDA=β,求∠FAD十∠C的度数(用含α和β的代数式表示).
5、在中,平分平分,求的度数.
-参考答案-
一、单选题
1、C
【解析】
【详解】
解:A、在中,是边上的高,该说法正确,故本选项不符合题意;
B、在中,是边上的高,该说法正确,故本选项不符合题意;
C、在中,不是边上的高,该说法错误,故本选项符合题意;
D、在中,是边上的高,该说法正确,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.
2、C
【解析】
【分析】
根据三角形的外角的概念解答即可.
【详解】
解:A.∠FBA是△ABC的外角,故不符合题意;
B. ∠DBC不是任何三角形的外角,故不符合题意;
C.∠CDB是∠ADB的外角,符合题意;
D. ∠BDG不是任何三角形的外角,故不符合题意;
故选:C.
【点睛】
本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.
3、A
【解析】
【分析】
三角形的任意两条之和大于第三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.
【详解】
解: 所以以3cm,4cm,5cm为边能构成三角形,故A符合题意;
所以以3cm,3cm,6cm为边不能构成三角形,故B不符合题意;
所以以5cm,10cm,4cm为边不能构成三角形,故C不符合题意;
所以以1cm,2cm,3cm为边不能构成三角形,故D不符合题意;
故选A
【点睛】
本题考查的是三角形的三边之间的关系,掌握“利用三角形三边之间的关系判定三条线段能否组成三角形”是解本题的关键.
4、C
【解析】
【分析】
根据三角形中线、角平分线的定义逐项判断即可求解.
【详解】
解:A、∵AE=DE,
∴BE是△ABD的中线,故本选项不符合题意;
B、∵BD平分∠EBC,
∴BD是△BCE的角平分线,故本选项不符合题意;
C、∵BD平分∠EBC,
∴∠2=∠3,
但不能推出∠2、∠3和∠1相等,故本选项符合题意;
D、∵S△AEB=×AE×BC,S△EDB=×DE×BC,AE=DE,
∴S△AEB=S△EDB,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形中线、角平分线的定义,熟练掌握三角形中,连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.
5、B
【解析】
【分析】
由AD∥BC可得∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,由角平分线的性质可得∠AEB=90°,∠DFC=90°,由三角形内角和定理可得到∠1=∠2=90°.
【详解】
解:∵AD∥BC,
∴∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,
∵∠DAB与∠ABC的角平分线交于点E,∠CDA与∠BCD的角平分线交于点F,
∴∠BAE=∠BAD,∠ABE=∠ABC,∠CDF=∠ADC,∠DCF=∠BCD,
∴∠BAE+∠ABE=(∠BAD+∠ABC)=90°,
∠CDF+∠DCF=(∠ADC+∠BCD) =90°,
∴∠1=180°-(∠BAE+∠ABE)= 90°,∠2=∠CDF+∠DCF= 90°,
∴∠1=∠2=90°,
故选:B.
【点睛】
本题考查了平行线的性质,角平分线的定义,三角形内角和定理,灵活运用这些性质进行推理是本题的关键.
6、A
【解析】
【分析】
根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解
【详解】
解:∵∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,设,
∴
即
故选A
【点睛】
本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
7、C
【解析】
【分析】
根据三角形的中线将三角形的面积分成相等的两部分即可求解.
【详解】
解:∵△ABC中,AD是BC边上的中线,△ABD的面积为3,
∴△ABC的面积=3×2=6.
故选:C.
【点睛】
考查了三角形的面积,关键是熟悉三角形的中线将三角形的面积分成相等的两部分的知识点.
8、C
【解析】
【分析】
依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.
【详解】
解:如图:
∵l1∥l2,∠1=46°,
∴∠3=∠1=46°,
又∵l3⊥l4,
∴∠2=90°﹣46°=44°,
故选:C.
【点睛】
本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.
9、C
【解析】
【分析】
设交于点,是射线上的一点,设,根据三角形的外角的性质可得,进而根据平角的定义即可求得,即可求得.
【详解】
如图,设交于点,是射线上的一点,
折叠,
设
即
故选C
【点睛】
本题考查了折叠的性质,三角形的外角的性质,掌握三角形外角的性质是解题的关键.
10、B
【解析】
【分析】
已知,得到,根据外角性质,得到,,再将两式相加,等量代换,即可得解;
【详解】
解:如图所示,
∵,
∴,
∵,,
∴,
∵,,
∴,
∵,,
∴;
故选D.
【点睛】
本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.
二、填空题
1、2<c<6
【解析】
【分析】
根据非负数的性质得到,,再根据三角形三边的关系得.
【详解】
解:,
∴,
,,
所以,
故答案为:
【点睛】
本题主要考查了三角形的三边关系,以及非负数的性质,解题的关键是求出,的值,熟练掌握三角形的三边关系.
2、钝角
【解析】
【分析】
根据三角形内角和定理,当可求得可得到答案.
【详解】
解:
,
当时,可得,则为钝角三角形,
故答案为:钝角.
【点睛】
本题主要考查三角形内角和定理,解题的关键是掌握三角形的三个内角和为.
3、40°##40度
【解析】
【分析】
根据已知得出∠B=2∠A,∠C=∠A+20°,代入∠A+∠B+∠C=180°得出方程∠A+2∠A+∠A+20°=180°,求出即可.
【详解】
解:∵∠B是∠A的2倍,∠C比∠A大20°,
∴∠B=2∠A,∠C=∠A+20°,
∵∠A+∠B+∠C=180°,
∴∠A+2∠A+∠A+20°=180°,
∴∠A=40°,
故答案为:40°.
【点睛】
本题考查了三角形内角和定理的应用,注意:三角形的内角和等于180°,用了方程思想.
4、30°##30度
【解析】
【分析】
根据三角形的外角的性质,即可求解.
【详解】
解:∵ ,
∴ ,
∵∠ACD=75°,∠A=45°,
∴ .
故答案为:30°
【点睛】
本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
5、
【解析】
【分析】
由构成三角形的条件计算即可.
【详解】
∵中
∴
∴.
故答案为:.
【点睛】
本题考查了由构成三角形的条件判断第三条边的取值范围,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.
三、解答题
1、①或③,理由见解析.
【解析】
【分析】
首先根据ADEF,,得到,然后根据平行线的判定定理逐个判断求解即可.
【详解】
解:∵ADEF,
∴,
∵,
∴,
当选择条件①平分时,
∴,
∴,
∴DGAB,故选择条件①可以使DGAB;
当选择条件②时,
∵,,
∴,同旁内角相等,不能证明两直线平行,
∴选择条件②不可以使DGAB;
当选择条件③时,
∵,
∴,
∴DGAB,故选择条件③可以使DGAB,
综上所述,使DGAB,可以选的条件是①或③.
故答案为:①或③.
【点睛】
此题考查了平行线的性质和判定定理,三角形外角的性质和角平分线的概念,解题的关键是熟练掌握平行线的性质和判定定理.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
2、 (1)∠1=40°
(2)∠E、∠AFE、∠MHE的数量关系为:∠AFE=∠E+∠MHE
(3)见解析
【解析】
【分析】
(1)根据平行线的性质得∠1=∠CHG,再由平角的定义得∠CHG+∠EHF+∠2=180°,进一步求出∠1的度数即可;
(2)由平行线的性质得∠AFE=∠CME,由三角形外角性质得∠CME=∠E+∠MHE,从而求得结论;
(3)设∠AFE=x,则∠BFH=90°﹣x,∠EFB=180°﹣x.由平行线的性质和三角形外角性质得∠HFT=∠BFT﹣∠BFH=x,故可得∠Q=15°+x.再证明∠CEH=210°﹣x.∠QEH=105°﹣x,由∠Q+∠QEH+∠QPE=180°得15°+x+105°﹣x+∠QPE=180°求得∠QPE=60°,从而∠QPE=∠H故可得结论.
(1)
∵AB∥CD,
∴∠1=∠CHG.
∵∠2=2∠1,
∴∠2=2∠CHG.
∵∠CHG+∠EHF+∠2=180°,
∴3∠CHG+60°=180°.
∴∠CHG=40°.
∴∠1=40°.
(2)
∠E、∠AFE、∠MHE的数量关系为:∠AFE=∠E+∠MHE,理由:
∵AB∥CD,
∴∠AFE=∠CME.
∵∠CME=∠E+∠MHE,
∴∠AFE=∠E+∠MHE.
(3)
证明:设∠AFE=x,则∠BFH=90°﹣x,∠EFB=180°﹣x.
∵AB∥CD,
∴∠BFT=∠ETF.
∵∠EFT=∠ETF,
∴∠EFT=∠BFT=∠EFB=90°﹣x.
∴∠HFT=∠BFT﹣∠BFH=x.
∵∠Q﹣∠HFT=15°,
∴∠Q=15°+x.
∵AB∥CD,
∴∠AFE+∠CEF=180°.
∴∠CEF=180°﹣x.
∴∠CEH=∠CEF+∠FEH=180°﹣x+30°=210°﹣x.
∵EQ平分∠CEH,
∴∠QEH=∠CEH=105°﹣x.
∵∠Q+∠QEH+∠QPE=180°,
∴15°+x+105°﹣x+∠QPE=180°.
∴∠QPE=60°.
∵∠H=60°,
∴∠QPE=∠H.
∴PQ∥FH.
【点睛】
本题属于几何变换综合题,考查了平行线的性质与判定,三角形内角和定理等知识,正确的识别图形是解题的关键.
3、(1)15°;(2)①是,见解析;②24°或33°
【解析】
【分析】
(1)根据是“准互余三角形”,得出,从中求出∠B即可;
(2)①是“准互余三角形”,理由如下:根据AD平分,得出,根据三角形内角和 ,得出即可;
②点E是边BC上一点,是“唯互余三角形”,分两种情况,当2∠BAE+∠ABC=90°时,先求出,可得∠EAC=33°,当∠BAE+2∠ABC=90°时,
可求,根据∠EAC=90°-∠BAE-∠ABC=24°即可.
【详解】
(1)∵是“准互余三角形”,,
∴,
∴,
故答案为:15°
(2)①解:是“准互余三角形”,理由如下:
∵AD平分,
∴,
∵,,
∴,
∴,
∴是“准互余三角形”.
②点E是边BC上一点,是“准互余三角形”,
∴当2∠BAE+∠ABC=90°时,
∴,
∴∠EAC=90°-∠BAE-∠ABC=33°,
∴当∠BAE+2∠ABC=90°时,
∴,
∴∠EAC=90°-∠BAE-∠ABC=90°-42°-24°=24°.
故答案为33°或24°.
【点睛】
本题考查新定义“准互余三角形”,角平分线定义,角的倍分,掌握如果一个三角形的两个内角与满足或.那么我们称这样的三角形为“准互余三角形”是解题关键.
4、(1)60°;(2)β-α.
【解析】
【分析】
(1)根据平行线的性质和平角的定义可得∠EBC=60°,∠AEF=60°,根据角平分线的性质和平行线的性质可得∠EBD=∠BDE=∠DBC=30°,再根据三角形内角和定理可求∠BAD的度数;
(2)过点A作AG∥BC,则∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,依此即可求解.
【详解】
解:(1)∵EF∥BC,∠BEF=120°,
∴∠EBC=60°,∠AEF=60°,
又∵BD平分∠EBC,
∴∠EBD=∠BDE=∠DBC=30°,
又∵∠BDA=90°,
∴∠EDA=60°,
∴∠BAD=60°;
(2)如图2,过点A作AG∥BC,
则∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,
则∠FAD+∠C=β-∠DBC=β-∠ABC=β-α.
【点睛】
考查了三角形内角和定理,平行线的性质,角平分线的性质,准确识别图形是解题的关键.
5、
【解析】
【分析】
根据外角的性质,求得,根据角平分线的定义可得,根据三角形的内角和求得,角平分线的性质可得,根据三角形内角和即可求解.
【详解】
解:∵,
∴,
∵平分
∴,
由三角形内角和的性质可得,,
∵平分
∴,
由三角形内角和的性质可得,.
【点睛】
此题考查了三角形内角和的性质、外角的性质以及角平分线的定义,解题的关键是掌握并灵活运用相关性质进行求解.
初中数学冀教版七年级下册第九章 三角形综合与测试课后练习题: 这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课后练习题,共21页。试卷主要包含了如图,是的中线,,则的长为,若三角形的两边a,若一个三角形的三个外角之比为3,如图,等内容,欢迎下载使用。
冀教版七年级下册第九章 三角形综合与测试同步练习题: 这是一份冀教版七年级下册第九章 三角形综合与测试同步练习题,共24页。试卷主要包含了如图,图形中的的值是等内容,欢迎下载使用。
冀教版七年级下册第九章 三角形综合与测试一课一练: 这是一份冀教版七年级下册第九章 三角形综合与测试一课一练,共22页。试卷主要包含了如图,,,,则的度数是,如图,点B等内容,欢迎下载使用。