![2021-2022学年冀教版七年级数学下册第九章 三角形课时练习试卷(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12767366/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版七年级数学下册第九章 三角形课时练习试卷(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12767366/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版七年级数学下册第九章 三角形课时练习试卷(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12767366/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版七年级下册第九章 三角形综合与测试练习
展开
这是一份冀教版七年级下册第九章 三角形综合与测试练习,共17页。试卷主要包含了如图,,,则的度数是等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组线段中,能构成三角形的是( )A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、62、若一个三角形的两边长分别为3和8,则第三边长可能是 ( )A.4 B.5 C.8 D.113、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是( )A.3cm B.4cm C.7cm D.10cm4、下列所给的各组线段,能组成三角形的是:( )A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,135、已知三角形的两边长分别为2cm和3cm,则第三边长可能是( )A.6cm B.5cm C.3cm D.1cm6、当三角形中一个内角是另一个内角的2倍时,我们称此三角形为“特征三角形”,其中称为“特征角”.如果一个“特征三角形”的“特征角”为60°,那么这个“特征三角形”的最大内角的度数是( )A.80° B.90° C.100° D.120°7、下列长度的三条线段能组成三角形的是( )A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,78、如图,,,则的度数是( )A.55° B.35° C.45° D.25°9、如图,在中,,,将沿直线翻折,点落在点的位置,则的度数是( ) A.30° B.45° C.60° D.75°10、如图,BD是的角平分线,,交AB于点E.若,,则的度数是( )A.10° B.20° C.30° D.50°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=56°,∠2=29°,则∠A的度数为______度.2、如图,∠ABD=80°,∠C=38°,则∠D=___度.3、一个三角形的三个内角之比为1:2:3,这个三角形最小的内角的度数是 _____.4、在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且a=3,b=4,若三边长为连续整数,则c=______.5、两根长度分别为3,5的木棒,若想钉一个三角形木架,第三根木棒的长度可以是________.(写一个值即可)三、解答题(5小题,每小题10分,共计50分)1、如图,BD是的角平分线,BE是的AC边上的中线.(1)若的周长为13,,,求AB的长.(2)若,,求的度数.2、已知:如图,在△ABC中,AB=3,AC=5.(1)直接写出BC的取值范围是 .(2)若点D是BC边上的一点,∠BAC=85°,∠ADC=140°,∠BAD=∠B,求∠C.3、如图,Rt△ABC中,,D、E分别是AB、AC上的点,且.求证:ED⊥AB4、根据题意画出图形,并填注理由证明:三角形的内角和等于180°. 已知:△ABC求证:∴∠A+∠B+∠C=180°证明:作BC的延长线CD,过点C作射线CE BA.∵CE BA(辅助线)∴∠B=∠ECD( )∠A=∠ACE( )∵∠BCA+∠ACE+∠ECD=180°( )∴∠A+∠B+∠ACB=180°( )5、已知:如图,AD是△ABC的角平分线,点E在BC上,点F在CA的延长线上,EF交AB于点G,且∠AGF=∠F.求证:EF∥AD. -参考答案-一、单选题1、C【解析】【分析】根据三角形的三边关系定理逐项判断即可得.【详解】解:三角形的三边关系定理:任意两边之和大于第三边.A、,不能构成三角形,此项不符题意;B、,不能构成三角形,此项不符题意;C、,能构成三角形,此项符合题意;D、,不能构成三角形,此项不符题意;故选:C.【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.2、C【解析】【分析】直接利用三角形三边关系得出第三边的取值范围,进而得出答案.【详解】解:∵一个三角形的两边长分别为3和8,∴5<第三边长<11,则第三边长可能是:8.故选:C.【点睛】此题主要考查了三角形的三边关系,正确得出第三边的取值范围是解题关键.3、C【解析】【分析】设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【详解】解:设三角形的第三边是xcm.则7-3<x<7+3.即4<x<10,四个选项中,只有选项C符合题意,故选:C.【点睛】本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.4、D【解析】【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A不符合题意;∵5+7=12,∴B不符合题意;∵5+5=10<11,∴C不符合题意;∵5+12=17>13,∴D符合题意;故选D.【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.5、C【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:设第三边长为xcm,根据三角形的三边关系可得:3-2<x<3+2,解得:1<x<5,只有C选项在范围内.故选:C.【点睛】本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.6、B【解析】【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最大内角即可.【详解】解:由题意得:α=2β,α=60°,则β=30°,180°-60°-30°=90°,故选B.【点睛】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.7、C【解析】【分析】根据三角形的三边关系,逐项判断即可求解.【详解】解:A、因为 ,所以不能组成三角形,故本选项不符合题意;B、因为 ,所以不能组成三角形,故本选项不符合题意;C、因为 ,所以能组成三角形,故本选项符合题意;D、因为 ,所以不能组成三角形,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.8、D【解析】【分析】根据三角形的内角和定理和对顶角相等求解即可.【详解】解:设AD与BC相交于O,则∠COD=∠AOB,∵∠C+∠COD+∠D=180°,∠A+∠AOB=∠B=180°,∠C=∠A=90°,∴∠D=∠B=25°,故选:D.【点睛】本题考查三角形的内角和定理、对顶角相等,熟练掌握三角形的内角和是180°是解答的关键.9、C【解析】【分析】设交于点,是射线上的一点,设,根据三角形的外角的性质可得,进而根据平角的定义即可求得,即可求得.【详解】如图,设交于点,是射线上的一点,折叠,设即故选C【点睛】本题考查了折叠的性质,三角形的外角的性质,掌握三角形外角的性质是解题的关键.10、B【解析】【分析】由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.【详解】解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,∴∠ABD=∠BDC−∠A=50°−30°=20°,∵BD是△ABC的角平分线,∴∠DBC=∠ABD=20°,∵DE∥BC,∴∠EDB=∠DBC=20°,故选:B.【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.二、填空题1、27【解析】【分析】如图,∠3=∠1,由∠3=∠2+∠A计算求解即可.【详解】解:如图∵a∥b,∠1=56°∴∠3=∠1=56°∵∠3=∠2+∠A,∠2=29°∴∠A=∠3﹣∠2=56°﹣29°=27°故答案为:27.【点睛】本题考查了平行线性质中的同位角,三角形的外角等知识.解题的关键在于正确的表示角的数量关系.2、3、30°##30度【解析】【分析】设三角形的三个内角分别为x,2x,3x,再根据三角形内角和定理求出x的值,进而可得出结论.【详解】解:∵三角形三个内角的比为1:2:3,∴设三角形的三个内角分别为x,2x,3x,∴x+2x+3x=180°,解得x=30°.∴这个三角形最小的内角的度数是30°.故答案为:30°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.4、2或5##5或2【解析】【分析】根据三角形的三边关系求得第三边的取值范围,进一步确定第三边的长,由此得出答案即可.【详解】解:∵a=3,b=4,∴根据三角形的三边关系,得4﹣3<c<4+3.即1<c<7,∵若三边长为连续整数,∴c=2或5故答案为:2或5.【点睛】本题主要考查三角形三边关系,注意掌握三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,解题的关键掌握三角形三边关系.5、4(答案不唯一)【解析】【分析】根据三角形中“两边之和大于第三边,两边之差小于第三边”,进行分析得到第三边的取值范围;再进一步找到符合条件的数值.【详解】解:根据三角形的三边关系,得第三边应大于两边之差,即;而小于两边之和,即,即第三边,故第三根木棒的长度可以是4.故答案为:4(答案不唯一).【点睛】本题主要考查了三角形三边关系,熟练掌握两边之和大于第三边,两边之差小于第三边是解题的关键.三、解答题1、(1)3;(2).【解析】【分析】(1)首先根据中线的性质得到,然后根据的周长为13,即可求出AB的长;(2)首先根据BD是的角平分线得到,然后根据三角形内角和定理即可求出的度数.【详解】(1)∵BE是的AC边上的中线,∴,又∵的周长为13,∴;(2)∵BD是的角平分线,∴,又∵,∴.【点睛】此题考查三角形中线和角平分线的概念,三角形内角和定理的运用,解题的关键是熟练掌握三角形中线和角平分线的概念,三角形内角和定理.2、(1)2<BC<8;(2)25°【解析】【分析】(1)根据三角形三边关系解答即可;(2)根据三角形外角性质和三角形内角和解答即可.【详解】解:(1)∵AC-AB<BC<AC+AB,AB=3,AC=5.∴2<BC<8,故答案为:2<BC<8(2)∵∠ADC是△ABD的外角∴∠ADC=∠B+∠BAD=140∵∠B=∠BAD∴∠B=∵∠B+∠BAC+∠C=180∴∠C=180﹣∠B﹣∠BAC即∠C=180﹣70﹣85=25【点睛】本题考查了三角形第三边的取值范围,三角形内角和定理和三角形外角的性质,能根据三角形的外角的性质求出∠B的度数是解此题的关键.3、见解析【解析】【分析】根据三角形内角和定理可得,从而可得结论.【详解】解:在中,,在中, ∵ ∴ ∴ED⊥AB【点睛】本题主要考查了垂直的判定,证明是解答本题的关键.4、两直线平行,同位角相等;两直线平行,内错角相等;平角等于180°;等量代换【解析】【分析】根据平行线的性质和平角度数等于180°求解即可.【详解】解:证明:作BC的延长线CD,过点C作射线CE BA.∵CE BA(辅助线)∴∠B=∠ECD(两直线平行,同位角相等)∠A=∠ACE(两直线平行,内错角相等)∵∠BCA+∠ACE+∠ECD=180°(平角等于180°)∴∠A+∠B+∠ACB=180°(等量代换)故答案为:两直线平行,同位角相等;两直线平行,内错角相等;平角等于180°;等量代换.【点睛】此题考查了证明三角形的内角和等于180°,平行线的性质以及平角度数等于180°,解题的关键是熟练掌握平行线的性质以及平角度数等于180°.5、见解析【解析】【分析】利用角平分线得到∠BAD=∠CAD,根据三角形外角的性质推出∠CAD=∠F,即可得到结论.【详解】∵AD是△ABC的角平分线,∴∠BAD=∠CAD,又∵∠BAD+∠CAD=∠AGF+∠F,且∠AGF=∠F,∴∠CAD=∠F,∴.【点睛】此题考查了角平分线的计算,三角形外角性质,平行线的判定定理,熟记平行线的判定定理是解题的关键.
相关试卷
这是一份初中数学第九章 三角形综合与测试综合训练题,共21页。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试一课一练,共25页。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试达标测试,共23页。试卷主要包含了如图,图形中的的值是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)