初中第九章 三角形综合与测试课时练习
展开
这是一份初中第九章 三角形综合与测试课时练习,共25页。
冀教版七年级数学下册第九章 三角形难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=( )A.30° B.40° C.50° D.60°2、如图,在中,若点使得,则是的( )A.高 B.中线 C.角平分线 D.中垂线3、以下各组线段长为边,能组成三角形的是( )A.,, B.,, C.,, D.,,4、如图,已知为的外角,,,那么的度数是( )A.30° B.40° C.50° D.60°5、一把直尺与一块三角板如图放置,若,则( )A.120° B.130° C.140° D.150°6、下列各组线段中,能构成三角形的是( )A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、67、如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,∠EAB=72°,以下四个说法:①∠CDF=30°;②∠ADB=50°;③∠ABD=22°;④∠CBN=108°其中正确说法的个数是( )A.1个 B.2个 C.3个 D.4个8、两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠F=45°,∠B=60°,AC与DE交于点M.若BC∥EF,则∠DMC的大小为( )A.100° B.105° C.115° D.120°9、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为( )A.40° B.45° C.50° D.60°10、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、等腰三角形的一条边长为4cm,另一条边长为6cm,则它的周长是________.2、如图,把纸片沿DE折叠,使点A落在图中的处,若,,则的大小为______.3、如图,△ABC中,点D在BC的延长线上,,与的平分线相交于点,得;与的平分线相交于点,得;…;与的平分线相交于点,得,=__________.4、如图,一把直尺的一边缘经过直角三角形的直角顶点,交斜边于点;直尺的另一边缘分别交、于点、,若,,则___________度.5、我们将一副三角尺按如图所示的位置摆放,则_______°.三、解答题(5小题,每小题10分,共计50分)1、(1)如图,AB//CD,CF平分∠DCE,若∠DCF=30°,∠E=20°,求∠ABE的度数;(2)如图,AB//CD,∠EBF=2∠ABF,CF平分∠DCE,若∠F的2倍与∠E的补角的和为190°,求∠ABE的度数.(3)如图,P为(2)中射线BE上一点,G是CD上任一点,PQ平分∠BPG,GN//PQ,GM平分∠DGP,若∠B=30°,求∠MGN的度数.2、已知AMCN,点B在直线AM、CN之间,AB⊥BC于点B.(1)如图1,请直接写出∠A和∠C之间的数量关系: .(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为 .3、如图,在△ABC中,∠BAC=40°,∠B=75°,AD是△ABC的角平分线,求∠ADB的度数.4、如图,已知:DE//BC,CD是∠ACB的平分线,∠B=80°,∠A=50°,求:∠EDC与∠BDC的度数.5、如图,AD是∠BAC的平分线,CE是△ADC边AD上的高,若∠BAC=80°,∠ECD=25°,求∠ACB的度数. -参考答案-一、单选题1、A【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.【详解】∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM−∠CBP=50°−20°=30°,故选:A.【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.2、B【解析】【分析】根据三角形的中线定义即可作答.【详解】解:∵BD=DC,∴AD是△ABC的中线,故选:B.【点睛】本题考查了三角形的中线概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.3、B【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2<4,不能组成三角形,故不符合题意;B、4+6>8,能组成三角形,故符合题意;C、5+6<12,不能够组成三角形,故不符合题意;D、3+3=6,不能组成三角形,故不符合题意.故选:B.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4、B【解析】【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.5、B【解析】【分析】由BC∥ED,得到∠2=∠CBD,由三角形外角的性质得到∠CBD=∠1+∠A=130°,由此即可得到答案.【详解】解:如图所示,由题意得:∠A=90°,BC∥EF,∴∠2=∠CBD,又∵∠CBD=∠1+∠A=130°,∴∠2=130°,故选B.【点睛】本题主要考查了三角形外角的性质,平行线的性质,熟知相关知识是解题的关键.6、C【解析】【分析】根据三角形的三边关系定理逐项判断即可得.【详解】解:三角形的三边关系定理:任意两边之和大于第三边.A、,不能构成三角形,此项不符题意;B、,不能构成三角形,此项不符题意;C、,能构成三角形,此项符合题意;D、,不能构成三角形,此项不符题意;故选:C.【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.7、D【解析】【分析】根据AD∥BC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.【详解】解:∵AD∥BC,∠C=30°,∴∠FDC=∠C=30°,故①正确;∴∠ADC=180°-∠FDC=180°-30°=150°,∵∠ADB:∠BDC=1:2,∴∠BDC=2∠ADB,∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,解得∠ADB=50°,故②正确∵∠EAB=72°,∴∠DAN=180°-∠EAB=180°-72°=108°,∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确∵AD∥BC,∴∠CBN=∠DAN=108°,故④正确其中正确说法的个数是4个.故选择D.【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.8、B【解析】【分析】首先根据直角三角形两锐角互余可算出∠C和∠E的度数,再由“两直线平行,内错角相等”,可求出∠MDC的度数,在△CMD中,利用三角形内角和可求出∠CMD的度数.【详解】解:在△ABC和△DEF中,∠BAC=∠EDF=90°,∠F=45°,∠B=60°,∴∠C=90°-∠B=30°,∠E=90°-∠F=45°,∵BC∥EF,∴∠MDC=∠E=45°,在△CMD中,∠CMD=180°-∠C-∠MDC=105°.故选:B.【点睛】本题主要考查三角形内角和,平行线的性质等内容,根据图形,结合定理求出每个角的度数是解题关键.9、C【解析】【分析】根据三角形内角和定理确定,然后利用平行线的性质求解即可.【详解】解:∵,,∴,∵,∴,故选:C.【点睛】题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.10、C【解析】【分析】根据三角形的三边关系可得,再解不等式可得答案.【详解】解:设三角形的第三边为,由题意可得:,即,故选:C.【点睛】本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.二、填空题1、16cm或14cm##14cm或16cm【解析】【分析】根据题意分腰为6cm和底为6cm两种情况,分别求出即可.【详解】解:①当腰为6cm时,它的周长为6+6+4=16(cm);②当底为6cm时,它的周长为6+4+4=14(cm); 故答案为:16cm或14cm.【点睛】本题考查了等腰三角形的性质的应用,注意:等腰三角形的两腰相等,注意分类讨论.2、##32度【解析】【分析】利用折叠性质得,,再根据三角形外角性质得,利用邻补角得到,则,然后利用进行计算即可.【详解】解:∵,∴,∵纸片沿DE折叠,使点A落在图中的A'处,∴,,∵,∴,∴,∴.故答案为:.【点睛】本题考查了折叠的性质,三角形外角的性质,三角形内角和定理等,理解题意,熟练掌握综合运用各个知识点是解题关键.3、【解析】【分析】结合题意,根据角平分线、三角形外角、三角形内角和的性质,得,同理得;再根据数字规律的性质分析,即可得到答案.【详解】解:根据题意,,与的平分线交于点,∴∠A1BC=,∠ACA1=,∴,∵,∴,∵,∴=,同理,得;;;…,∴.故答案为:.【点睛】本题考查了三角形性质和数字规律的知识;解题的关键是熟练掌握三角形内角和、三角形外角、角平分线、数字规律的性质,从而完成求解.4、20【解析】【分析】利用平行线的性质求出∠1,再利用三角形外角的性质求出∠DCB即可.【详解】解:∵EF∥CD,∴,∵∠1是△DCB的外角,∴∠1-∠B=50°-30°=20º,故答案为:20.【点睛】本题考查了平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识.5、45【解析】【分析】利用三角形的外角性质分别求得∠α和∠β的值,代入求解即可.【详解】解:根据题意,∠A=60°,∠C=30°,∠D=∠DBG=45°,∠ABC=∠DGB=∠DGC=90°,∴∠β=∠DBG+∠C=75°,∠α=∠DGC+∠C=120°,∴∠α−∠β=120°-75°=45°,故答案为:45.【点睛】本题考查了三角形的外角性质,解答本题的关键是明确题意,找到三角板中隐含的角的度数,利用数形结合的思想解答.三、解答题1、(1)∠ABE=40°;(2)∠ABE=30°;(3)∠MGN=15°.【解析】【分析】(1)过E作EMAB,根据平行线的判定与性质和角平分线的定义解答即可;(2)过E作EMAB,过F作FNAB,根据平行线的判定与性质,角平分线的定义以及解一元一次方程解答即可;(3)过P作PLAB,根据平行线的判定与性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义解答即可.【详解】解:(1)过E作EMAB,∵ABCD,∴CDEMAB,∴∠ABE=∠BEM,∠DCE=∠CEM,∵CF平分∠DCE,∴∠DCE=2∠DCF,∵∠DCF=30°,∴∠DCE=60°,∴∠CEM=60°,又∵∠CEB=20°,∴∠BEM=∠CEM﹣∠CEB=40°,∴∠ABE=40°;(2)过E作EMAB,过F作FNAB,∵∠EBF=2∠ABF,∴设∠ABF=x,∠EBF=2x,则∠ABE=3x,∵CF平分∠DCE,∴设∠DCF=∠ECF=y,则∠DCE=2y,∵ABCD,∴EMABCD,∴∠DCE=∠CEM=2y,∠BEM=∠ABE=3x,∴∠CEB=∠CEM﹣∠BEM=2y﹣3x,同理∠CFB=y﹣x,∵2∠CFB+(180°﹣∠CEB)=190°,∴2(y﹣x)+180°﹣(2y﹣3x)=190°, ∴x=10°,∴∠ABE=3x=30°;(3)过P作PLAB,∵GM平分∠DGP,∴设∠DGM=∠PGM=y,则∠DGP=2y,∵PQ平分∠BPG,∴设∠BPQ=∠GPQ=x,则∠BPG=2x,∵PQGN,∴∠PGN=∠GPQ=x,∵ABCD,∴PLABCD, ∴∠GPL=∠DGP=2y,∠BPL=∠ABP=30°,∵∠BPL=∠GPL﹣∠BPG,∴30°=2y﹣2x,∴y﹣x=15°,∵∠MGN=∠PGM﹣∠PGN=y﹣x,∴∠MGN=15°.【点睛】此题考查平行线的判定与性质,角平分线的定义,三角形的内角和定理,解题关键在于作辅助线和掌握判定定理.2、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,见解析;(3)45°【解析】【分析】(1)过点B作BE∥AM,利用平行线的性质即可求得结论;(2)过点B作BE∥AM,利用平行线的性质即可求得结论;(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.【详解】(1)过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C=∠CBE,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.故答案为:∠A+∠C=90°;(2)∠A和∠C满足:∠C﹣∠A=90°.理由:过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C+∠CBE=180°,∴∠CBE=180°﹣∠C,∵AB⊥BC,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∴∠A+180°﹣∠C=90°,∴∠C﹣∠A=90°;(3)设CH与AB交于点F,如图,∵AE平分∠MAB,∴∠GAF=∠MAB,∵CH平分∠NCB,∴∠BCF=∠BCN,∵∠B=90°,∴∠BFC=90°﹣∠BCF,∵∠AFG=∠BFC,∴∠AFG=90°﹣∠BCF.∵∠AGH=∠GAF+∠AFG,∴∠AGH=∠MAB+90°﹣∠BCN=90°﹣(∠BCN﹣∠MAB).由(2)知:∠BCN﹣∠MAB=90°,∴∠AGH=90°﹣45°=45°.故答案为:45°.【点睛】本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.3、85°【解析】【分析】根据角平分线定义求出,根据三角形内角和定理得出,代入求出即可.【详解】解:平分,,,,.【点睛】本题考查了三角形内角和定理,角平分线定义的应用,解题的关键是注意:三角形的内角和等于.4、∠BDC=75°,∠EDC =25°【解析】【分析】先根据三角形内角和定理求出∠ACB =50°,再由角平分线的定义求出,则由三角形内角和定理可求出∠BDC=180°-∠B-∠BCD=75°,再由平行线的性质即可得到∠EDC=∠BCD=25°.【详解】解:∵∠A=50°,∠B=80°,∴∠ACB=180°-∠A-∠B=50°,∵CD平分∠ACB,∴,∴∠BDC=180°-∠B-∠BCD=75°,∵DE∥BC,∴∠EDC=∠BCD=25°.【点睛】本题主要考查了三角形内角和定理,角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.5、75°【解析】【分析】根据角平分线的定义求出∠DAC的度数,所以EDCA可求,进而求出∠ACB的度数.【详解】解:∵AD是∠BAC的平分线,∠BAC=80°,∴∠DAC=40°,∵CE是△ADC边AD上的高,∴∠ACE=90°﹣40°=50°,∵∠ECD=25°∴∠ACB=50°+25°=75°.【点睛】本题主要考查了三角形的内角和定理.解题的关键是掌握三角形的内角和定理以及角平分线的性质.
相关试卷
这是一份冀教版七年级下册第九章 三角形综合与测试精练,共20页。试卷主要包含了已知△ABC的内角分别为∠A,如图,是的中线,,则的长为等内容,欢迎下载使用。
这是一份初中数学第九章 三角形综合与测试复习练习题,共22页。
这是一份数学七年级下册第九章 三角形综合与测试综合训练题,共20页。试卷主要包含了如图,在中,,,则外角的度数是等内容,欢迎下载使用。