搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新冀教版七年级数学下册第九章 三角形专题测试练习题(含详解)

    2021-2022学年最新冀教版七年级数学下册第九章 三角形专题测试练习题(含详解)第1页
    2021-2022学年最新冀教版七年级数学下册第九章 三角形专题测试练习题(含详解)第2页
    2021-2022学年最新冀教版七年级数学下册第九章 三角形专题测试练习题(含详解)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版七年级下册第九章 三角形综合与测试巩固练习

    展开

    这是一份冀教版七年级下册第九章 三角形综合与测试巩固练习,共25页。试卷主要包含了三角形的外角和是等内容,欢迎下载使用。
    冀教版七年级数学下册第九章 三角形专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,BD的角平分线,,交AB于点E.若,则的度数是(       A.10° B.20° C.30° D.50°2、数学课上,同学们在作AC边上的高时,共画出下列四种图形,其中正确的是(       ).A. B.C. D.3、已知三角形的两边长分别为,则下列长度的四条线段中能作为第三边的是(       A. B. C. D.4、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为(       A. B. C. D.5、如图,相交于点O,则下列结论不正确的是(       A. B. C. D.6、下列所给的各组线段,能组成三角形的是:(       )A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,137、如图,钝角中,为钝角,边上的高,的平分线,则之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是(       A. B.C. D.8、如图,将BC边对折,使点B与点C重合,DE为折痕,若,则       ).A.45° B.60° C.35° D.40°9、三角形的外角和是(  )A.60° B.90° C.180° D.360°10、以下列长度的各组线段为边,能组成三角形的是(     A. B.C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将△ABC平移到△A’B’C’的位置(点B’AC边上),若∠B=55°,∠C=100°,则∠AB’A’的度数为_____°.2、如图,三角形ABC的面积为1,EAC的中点,ADBE相交于P,那么四边形PDCE的面积为______.3、ABC的三边长为abc,且ab满足a2﹣4a+4+=0,则c的取值范围是______.4、如图,已知∠A=60°,∠B=20°,∠C=30°,则∠BDC的度数为_____.5、如图,线段,垂足为点,线段分别交于点,连结.则的度数为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,CE平分∠ACBAB于点EADABCBC上的高,ADCE相交于点F,且∠ACB=80°,求∠AFE的度数.2、在中,平分平分,求的度数.3、如图,点CB分别在直线MNPQ上,点A在直线MNPQ之间,MNPQ(1)如图1,求证:∠A=∠MCA+∠PBA(2)如图2,过点CCDAB,点EPQ上,∠ECM=∠ACD,求证:∠A=∠ECN(3)在(2)的条件下,如图3,过点BPQ的垂线交CE于点F,∠ABF的平分线交AC于点G,若∠DCE=∠ACE,∠CFBCGB,求∠A的度数.4、将一副三角板中的两块直角三角尺的直角顶点C按如图1方式叠放在一起,其中(1)若,则的度数为_______;(2)直接写出的数量关系:_________;(3)直接写出的数量关系:__________;(4)如图2,当且点E在直线的上方时,将三角尺固定不动,改变三角尺的位置,但始终保持两个三角尺的顶点C重合,这两块三角尺是否存在一组边互相平行?请直接写出角度所有可能的值___________.5、如图,中,BEAC边上的高,CD平分CDBE相交于点F.若,求的度数. -参考答案-一、单选题1、B【解析】【分析】由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.【详解】解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD∴∠ABD=∠BDC−∠A=50°−30°=20°,BDABC的角平分线,∴∠DBC=∠ABD=20°,DEBC∴∠EDB=∠DBC=20°,故选:B.【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.2、A【解析】【分析】满足两个条件:①经过点B;②垂直AC,由此即可判断.【详解】解:根据垂线段的定义可知,A选项中线段BE,是点B作线段AC所在直线的垂线段,故选:A.【点睛】本题考查作图-复杂作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3、C【解析】【分析】根据三角形的三边关系可得,再解不等式可得答案.【详解】解:设三角形的第三边为,由题意可得:故选:C.【点睛】本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.4、A【解析】【分析】根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解【详解】解:∵∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,设故选A【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.5、B【解析】【分析】根据两直线相交对顶角相等、三角形角的外角性质即可确定答案.【详解】解:选项A、∵∠1与∠2互为对顶角,∴∠1=∠2,故选项A不符合题意;选项B、∵∠1=∠B+∠C,∴∠1>∠B,故选项B符合题意;选项C、∵∠2=∠D+∠A,∴∠2>∠D,故选项C不符合题意;选项D、∵,∴,故选项D不符合题意;故选:B.【点睛】本题主要考查了对顶角的性质、平行线的性质和三角形内角和、外角的性质,能熟记对顶角的性质是解此题的关键.6、D【解析】【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,A不符合题意;∵5+7=12,B不符合题意;∵5+5=10<11,C不符合题意;∵5+12=17>13,D符合题意;故选D【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.7、B【解析】【分析】根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.【详解】解:由三角形内角和知∠BAC=180°-∠2-∠1,AE为∠BAC的平分线,∴∠BAE=BAC=(180°-∠2-∠1).ADBC边上的高,∴∠ADC=90°=∠DAB+∠ABD又∵∠ABD=180°-∠2,∴∠DAB=90°-(180°-∠2)=∠2-90°,∴∠EAD=∠DAB+∠BAE=∠2-90°+(180°-∠2-∠1)=(∠2-∠1).故选:B【点睛】本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.8、A【解析】【分析】由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.【详解】解:由折叠得∠B=∠BCD∵∠A+∠B+∠ACB=180°∴65°+2∠B+25°=180°∴∠B=45°故选:A.【点睛】此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.9、D【解析】【分析】根据三角形的内角和定理、邻补角的性质即可得.【详解】解:如图,即三角形的外角和是故选:D.【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.10、C【解析】【分析】根据三角形三条边的关系计算即可.【详解】解:A. ∵2+4=6,∴不能组成三角形;B. ∵2+5<9,∴不能组成三角形;C. ∵7+8>10,∴能组成三角形;D. ∵6+6<13,∴不能组成三角形;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.二、填空题1、25【解析】【分析】先根据三角形内角和定理求出∠A=25°,然后根据平移的性质得到,则【详解】解:∵∠B=55°,∠C=100°,∴∠A=180°-∠B-∠C=25°,由平移的性质可得故答案为:25.【点睛】本题主要考查了三角形内角和定理,平移的性质,平行线的性质,解题的关键在于能够熟练掌握平移的性质.2、【解析】【分析】连接CP.设△CPE的面积是x,△CDP的面积是y.根据BDDC=2:1,EAC的中点,得△BDP的面积是2y,△APE的面积是x,进而得到△ABP的面积是4x.再根据△ABE的面积是△BCE的面积相等,得4x+x=2y+x+y,解得,再根据△ABC的面积是1即可求得xy的值,从而求解.【详解】解:连接CP, 设△CPE的面积是x,△CDP的面积是yBDDC=2:1,EAC的中点, ∴△BDP的面积是2y,△APE的面积是xBDDC=2:1,CEAC=1:2, ∴△ABP的面积是4x∴4x+x=2y+x+y解得又∵4x+x=解得:x=,则 则四边形PDCE的面积为x+y=故答案为:【点睛】本题能够根据三角形的面积公式求得三角形的面积之间的关系.等高的两个三角形的面积比等于它们的底的比;等底的两个三角形的面积比等于它们的高的比.3、2<c<6【解析】【分析】根据非负数的性质得到,再根据三角形三边的关系得【详解】解:所以故答案为:【点睛】本题主要考查了三角形的三边关系,以及非负数的性质,解题的关键是求出的值,熟练掌握三角形的三边关系.4、110°##110度【解析】【分析】延长BDAC于点E,根据三角形的外角性质计算,得到答案.【详解】延长BDAC于点E∵∠DECABE的外角,∠A=60°,∠B=20°,∴∠DEC=∠A+∠B=80°,则∠BDC=∠DEC+∠C=110°,故答案为:110°.【点睛】本题考查了三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和,作辅助线DE是解题的关键.5、270°##270度【解析】【分析】由题意易得,然后根据三角形内角和定理可进行求解.【详解】解:∵,且同理可得:故答案为270°.【点睛】本题主要考查三角形内角和、垂直的定义及对顶角相等,熟练掌握三角形内角和、垂直的定义及对顶角相等是解题的关键.三、解答题1、∠AFE=50°.【解析】【分析】根据CE平分∠ACB,∠ACB=80°,得出∠ECB=,根据高线性质得出∠ADC=90°,根据三角形内角和得出∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,利用对顶角性质得出∠AFE=∠DFC=50°即可.【详解】解:∵CE平分∠ACB,∠ACB=80°,∴∠ECB=AD是△ABCBC上的高,ADBC∴∠ADC=90°,∴∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,∴∠AFE=∠DFC=50°.【点睛】本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键.2、【解析】【分析】根据外角的性质,求得,根据角平分线的定义可得,根据三角形的内角和求得,角平分线的性质可得,根据三角形内角和即可求解.【详解】解:∵平分由三角形内角和的性质可得,平分由三角形内角和的性质可得,【点睛】此题考查了三角形内角和的性质、外角的性质以及角平分线的定义,解题的关键是掌握并灵活运用相关性质进行求解.3、(1)见解析;(2)见解析;(3)72°.【解析】【分析】(1)过点A作平行线,证出三条直线互相平行,由平行得出与∠ACM和∠ABP相等的角即可得出结论;(2)由CDAB,可得同旁内角互补,再结合∠ECM与∠ECN的邻补角关系,可得结论;(3)延长CAPQ于点H,先证明∠MCA=∠ACE=∠ECD,∠ABP=∠NCD,再设∠MCA=∠ACE=∠ECD=x,由(1)可知∠CFB=∠FCN+∠FBQ,从而∠CFB=270-2x,列出方程解得x值,则不难求得答案.【详解】解:(1)证明:过点AADMNMNPQADMNADMNPQ∴∠MCA=∠DAC,∠PBA=∠DAB∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA即:∠A=∠MCA+∠PBA(2)∵CDAB∴∠A+∠ACD=180°,∵∠ECM+∠ECN=180°,又∠ECM=∠ACD∴∠A=∠ECN(3)如图,延长CAPQ于点H∵∠ECM=∠ACD,∠DCE=∠ACE∴∠MCA=∠ACE=∠ECDMNPQ∴∠MCA=∠AHB∵∠CAB=∠AHB+∠PBA,且由(2)知∠CAB=∠ECN∴∠ABP=∠NCD设∠MCA=∠ACE=∠ECD=x由(1)可知∠CFB=∠FCN+∠FBQ∴∠CFB=270-2x由(1)可知∠CGB=∠MCG+∠GBP∴∠CGB=135°−x∴270°−2x= (135°−x) ,解得:x=54°,∴∠AHB=54°,∴∠ABP=∠NCD=180°-54°×3=18°,∴∠CAB=54°+18°=72°.【点睛】本题考查了平行线的性质及一元一次方程在计算问题中的应用,三角形的内角和定理以及三角形的外角性质,理清题中的数量关系并正确列式是解题的关键.4、(1);(2;(3;(4)存在一组边互相平行;【解析】【分析】(1)根据垂直的性质结合图形求解即可;(2)根据垂直的性质及各角之间的关系即可得出;(3)由(2)可得,根据图中角度关系可得,将其代入即可得;4)根据题意,分五种情况进行分类讨论:①当时;②当时;③当时;④当时;⑤当时;分别利用平行线的性质进行求解即可得.【详解】解:(1)故答案为:2故答案为:3)由(2)得:由图可知:故答案为:4)①如图所示:当时,由(2)可知:②如图所示:当时,③如图所示:当时,④如图所示:当时,⑤如图所示:当时,延长ACBE于点F综合可得:的度数为:故答案为:【点睛】题目主要考查垂直的性质、各角之间的计算、平行线的性质等,熟练掌握平行线的性质进行分类讨论是解题关键.5、【解析】【分析】先根据三角形的内角和定理可得,再根据角平分线的定义可得,然后根据垂直的定义可得,最后根据三角形的外角性质即可得.【详解】解:中,平分边上的高,【点睛】本题考查了三角形的内角和定理、角平分线的定义、三角形的外角性质等知识点,熟练掌握三角形的内角和定理是解题关键. 

    相关试卷

    初中数学冀教版七年级下册第九章 三角形综合与测试随堂练习题:

    这是一份初中数学冀教版七年级下册第九章 三角形综合与测试随堂练习题,共21页。试卷主要包含了如图,在中,AD,如图,点D等内容,欢迎下载使用。

    2021学年第九章 三角形综合与测试单元测试课后测评:

    这是一份2021学年第九章 三角形综合与测试单元测试课后测评,共20页。试卷主要包含了下列叙述正确的是等内容,欢迎下载使用。

    初中数学冀教版七年级下册第九章 三角形综合与测试测试题:

    这是一份初中数学冀教版七年级下册第九章 三角形综合与测试测试题,共21页。试卷主要包含了如图,在中,AD,下列叙述正确的是,如图,在中,若点使得,则是的等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map