初中数学冀教版七年级下册第九章 三角形综合与测试一课一练
展开
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试一课一练,共25页。
冀教版七年级数学下册第九章 三角形课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,钝角中,为钝角,为边上的高,为的平分线,则与、之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )A. B.C. D.2、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外面时,此时测得∠1=112°,∠A=40°,则∠2的度数为( )A.32° B.33° C.34° D.38°3、如图,△AOB绕点O逆时针旋转65°得到△COD,若∠COD=30°,则∠BOC的度数是( )A.30° B.35° C.45° D.60°4、将一副三角板按不同位置摆放,下图中与互余的是( )A. B.C. D.5、如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,∠EAB=72°,以下四个说法:①∠CDF=30°;②∠ADB=50°;③∠ABD=22°;④∠CBN=108°其中正确说法的个数是( )A.1个 B.2个 C.3个 D.4个6、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )A.1个 B.2个 C.3个 D.4个7、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于( )A.180° B.210° C.360° D.270°8、小东要从下面四组木棒中选择一组制作一个三角形作品,你认为他应该选( )组.A.2,3,5 B.3,8,4 C.2,4,7 D.3,4,59、如图,四边形ABCD是梯形,,与的角平分线交于点E,与的角平分线交于点F,则与的大小关系为( )A. B. C. D.无法确定10、如图,将△ABC沿着DE减去一个角后得到四边形BCED,若∠BDE和∠DEC的平分线交于点F,∠DFE=α,则∠A的度数是( )A.180°﹣α B.180°﹣2α C.360°﹣α D.360°﹣2α第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC中,BA=BC,D为△ABC内一点,将△BDC绕点B逆时针旋转至△BEA处,延长AE,CD交于点F,若∠ABC=70°,则∠AFC的度数为 _____.2、已知中,,高和所在直线交于,则的度数是________.3、在△ABC中,若AC=3,BC=7则第三边AB的取值范围为________.4、已知,在△ABC中,∠B=48°,∠C=68°,AD是BC边上的高,AE平分∠BAC,则∠DAE的度数为____.5、如图,已知∠A=60°,∠B=20°,∠C=30°,则∠BDC的度数为_____.三、解答题(5小题,每小题10分,共计50分)1、已知,如图,在△ABC中,AH平分∠BAC交BC于点H,D、E分别在CA、BA 的延长线上,DB∥AH,∠D=∠E. (1))求证:DB∥EC;(2)若∠ABD=2∠ABC,∠DAB比∠AHC大5°.求∠D的度数.2、如图,在△ABC中,点D为∠ABC的平分线BD上一点,连接AD,过点D作EF∥BC交AB于点E,交AC于点F.(1)如图1,若AD⊥BD于点D,∠BEF=120°,求∠BAD的度数;(2)如图2,若∠ABC=α,∠BDA=β,求∠FAD十∠C的度数(用含α和β的代数式表示).3、如图,将一副直角三角板的直角顶点C叠放在一起.(1)如图(1),若∠DCE=33°,则∠BCD= ,∠ACB= .(2)如图(1),猜想∠ACB与∠DCE的大小有何特殊关系?并说明理由.(3)如图(2),若是两个同样的直角三角板60°锐角的顶点A重合在一起,则∠DAB与∠CAE的数量关系为 .4、如图:已知AB∥CD,BD平分∠ABC,AC平分∠BCD,求∠BOC的度数.∵AB∥CD(已知),∴∠ABC+ =180°( ).∵BD平分∠ABC,AC平分∠BCD,(已知),∴∠DBC=∠ABC,∠ACB=∠BCD(角平分线的意义).∴∠DBC+∠ACB=( )(等式性质),即∠DBC+∠ACB= °.∵∠DBC+∠ACB+∠BOC=180°( ),∴∠BOC= °(等式性质).5、在中,平分平分,求的度数. -参考答案-一、单选题1、B【解析】【分析】根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.【详解】解:由三角形内角和知∠BAC=180°-∠2-∠1,∵AE为∠BAC的平分线,∴∠BAE=∠BAC=(180°-∠2-∠1).∵AD为BC边上的高,∴∠ADC=90°=∠DAB+∠ABD.又∵∠ABD=180°-∠2,∴∠DAB=90°-(180°-∠2)=∠2-90°,∴∠EAD=∠DAB+∠BAE=∠2-90°+(180°-∠2-∠1)=(∠2-∠1).故选:B【点睛】本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.2、A【解析】【分析】由折叠的性质可知,再由三角形外角的性质即可求出的大小,再次利用三角形外角的性质即可求出的大小.【详解】如图,设线段和线段交于点F.由折叠的性质可知.∵,即,∴.∵,即,∴.故选A.【点睛】本题考查折叠的性质,三角形外角的性质.利用数形结合的思想是解答本题的关键.3、B【解析】【分析】由旋转的性质可得∠AOC=65°,由∠AOB=30°,即可求∠BOC的度数.【详解】解:∵△AOB绕点O逆时针旋转65°得到△COD,∴∠AOC=65°,∵∠AOB=30°,∴∠BOC=∠AOC−∠AOB=35°.故选:B.【点睛】本题考查了旋转的性质,三角形内角和定理,熟练运用旋转的性质是本题的关键.4、A【解析】【分析】根据平角的定义可判断A,D,根据同角的余角相等可判断B,根据三角形的外角的性质可判断C,从而可得答案.【详解】解:选项A:根据平角的定义得:∠α+90°+∠β=180°, ∴∠α+∠β=90°, 即∠α与∠β互余;故A符合题意;选项B:如图, 故B不符合题意;选项C:如图, 故C不符合题意;选项D: 故D不符合题意;故选A【点睛】本题考查的是平角的定义,互余的含义,同角的余角相等,三角形的外角的性质,掌握“与直角三角形有关的角度的计算”是解本题的关键.5、D【解析】【分析】根据AD∥BC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.【详解】解:∵AD∥BC,∠C=30°,∴∠FDC=∠C=30°,故①正确;∴∠ADC=180°-∠FDC=180°-30°=150°,∵∠ADB:∠BDC=1:2,∴∠BDC=2∠ADB,∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,解得∠ADB=50°,故②正确∵∠EAB=72°,∴∠DAN=180°-∠EAB=180°-72°=108°,∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确∵AD∥BC,∴∠CBN=∠DAN=108°,故④正确其中正确说法的个数是4个.故选择D.【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.6、C【解析】【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.∵c是奇数,∴c=3或5或7,有3个值.则对应的三角形有3个.故选:C.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.7、B【解析】【分析】已知,得到,根据外角性质,得到,,再将两式相加,等量代换,即可得解;【详解】解:如图所示,∵,∴,∵,,∴,∵,,∴,∵,,∴;故选D.【点睛】本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.8、D【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【详解】解:根据三角形的三边关系,得A、2+3=5,不能组成三角形,不符合题意;B、3+4<8,不能够组成三角形,不符合题意;C、2+4<7,不能够组成三角形,不符合题意;D、3+4>5,不能够组成三角形,不符合题意.故选:D.【点睛】本题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.9、B【解析】【分析】由AD∥BC可得∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,由角平分线的性质可得∠AEB=90°,∠DFC=90°,由三角形内角和定理可得到∠1=∠2=90°.【详解】解:∵AD∥BC,∴∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,∵∠DAB与∠ABC的角平分线交于点E,∠CDA与∠BCD的角平分线交于点F,∴∠BAE=∠BAD,∠ABE=∠ABC,∠CDF=∠ADC,∠DCF=∠BCD,∴∠BAE+∠ABE=(∠BAD+∠ABC)=90°,∠CDF+∠DCF=(∠ADC+∠BCD) =90°,∴∠1=180°-(∠BAE+∠ABE)= 90°,∠2=∠CDF+∠DCF= 90°,∴∠1=∠2=90°,故选:B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形内角和定理,灵活运用这些性质进行推理是本题的关键.10、B【解析】【分析】根据∠DFE=α得到∠FDE+∠FED,再根据角平分线的性质求出∠BDE+∠CED=360°-2α,利用外角的性质得到∠ADE+∠AED=2α,最后根据三角形内角和求出结果.【详解】解:∵∠DFE=α,∴∠FDE+∠FED=180°-α,由角平分线的定义可知:∠BDF=∠FDE,∠CEF=∠FED,∴∠BDE+∠CED=2∠FDE+2∠FED=360°-2α,∴∠ADE+∠AED=180°-∠BDE +180°-∠CED=2α,∴∠A=180°-(∠ADE+∠AED)=180°-2α,故选B.【点睛】本题考查了角平分线的定义,三角形内角和,三角形外角的性质,解题的关键是利用角平分线得到相等的角,根据内角和进行计算.二、填空题1、70°或70度【解析】【分析】先根据旋转的性质得到∠EBD=∠ABC=70°,∠BDC=∠BEA,然后根据邻补角的性质和三角形内角和定理即可得到∠AFC=∠EBD=70°.【详解】解: ∵△BDC绕点B逆时针旋转得到△BEA,∴∠EBD=∠ABC=70°,∠BDC=∠BEA,∴∠FEG=∠BDG,∵∠EGF=∠DGB,∴∠AFC=∠EBD=70°.故答案为:70°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.2、45°或135°【解析】【分析】分两种情况讨论:①如图1,为锐角三角形,由题意知, ,,,,代值计算求解即可;②如图2,为钝角三角形,由题意知,在中,,,,代值计算求解即可.【详解】解:由题意知①如图1所示,为锐角三角形∵,∴,∵∴∵∴;②如图2所示,为钝角三角形∵,∴在中,,∴;综上所述,的值为或故答案为:或.【点睛】本题考查了三角形的高,三角形的内角和定理.解题的关键在于正确求解角度.3、4<AB<10【解析】【分析】根据三角形的三边关系,直接求解即可.【详解】解:∵在△ABC中,AC=3,BC=7,,即,解得.故答案为:.【点睛】本题考查的是三角形的三边关系,熟悉相关性质是解题的关键.三角形中第三边的长大于其他两边之差,小于其他两边之和.4、10°##10度【解析】【分析】由三角形内角和求出的度数,然后利用角平分线的定义求出的度数,再根据AD⊥BC求出的度数,利用即可求出的度数.【详解】解:如图,∵∠B=48°,∠C=68°∵AE平分∠BAC∵AD⊥BC故答案为【点睛】本题主要考查三角形内角和定理和角平分线的定义,掌握三角形内角和定理和角平分线的定义是解题的关键.5、110°##110度【解析】【分析】延长BD交AC于点E,根据三角形的外角性质计算,得到答案.【详解】延长BD交AC于点E,∵∠DEC是△ABE的外角,∠A=60°,∠B=20°,∴∠DEC=∠A+∠B=80°,则∠BDC=∠DEC+∠C=110°,故答案为:110°.【点睛】本题考查了三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和,作辅助线DE是解题的关键.三、解答题1、(1)见解析;(2)50°【解析】【分析】(1)根据平行线的性质可得∠D=∠CAH,根据角平分线的定义可得∠BAH=∠CAH,再根据已知条件和等量关系可得∠BAH=∠E,再根据平行线的判定即可求解;(2)可设∠ABC=x,则∠ABD=2x,则∠BAH=2x,可得∠DAB=180°−4x,可得∠AHC=175°−4x,可得175°−4x=3x,解方程求得x,进一步求得∠D的度数.【详解】(1)证明:∵DBAH,∴∠D=∠CAH,∵AH平分∠BAC,∴∠BAH=∠CAH,∵∠D=∠E,∴∠BAH=∠E,∴AHEC,∴DBEC;(2)解:设∠ABC=x,则∠ABD=2x,∠BAH=2x,∠DAB=180°−4x,∠DAB比∠AHC大5°∠AHC=175°−4x, DBAH, 即:175°−4x=3x,解得x=25°,则∠D=∠CAH=∠BAH=∠ABD=2x=50°.【点睛】考查了三角形内角和定理,平行线的判定与性质,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.2、(1)60°;(2)β-α.【解析】【分析】(1)根据平行线的性质和平角的定义可得∠EBC=60°,∠AEF=60°,根据角平分线的性质和平行线的性质可得∠EBD=∠BDE=∠DBC=30°,再根据三角形内角和定理可求∠BAD的度数;(2)过点A作AG∥BC,则∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,依此即可求解.【详解】解:(1)∵EF∥BC,∠BEF=120°,∴∠EBC=60°,∠AEF=60°,又∵BD平分∠EBC,∴∠EBD=∠BDE=∠DBC=30°,又∵∠BDA=90°,∴∠EDA=60°,∴∠BAD=60°;(2)如图2,过点A作AG∥BC,则∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,则∠FAD+∠C=β-∠DBC=β-∠ABC=β-α.【点睛】考查了三角形内角和定理,平行线的性质,角平分线的性质,准确识别图形是解题的关键.3、(1)57°,147°;(2)∠ACB=180°-∠DCE,理由见解析;(3)∠DAB+∠CAE=120°【解析】【分析】(1)根据角的和差定义计算即可.(2)利用角的和差定义计算即可.(3)利用特殊三角板的性质,角的和差定义即可解决问题.【详解】解:(1)由题意,;;故答案为:57°,147°. (2)∠ACB=180°-∠DCE, 理由如下:∵ ∠ACE=90°-∠DCE,∠BCD=90°-∠DCE, ∴ ∠ACB=∠ACE+∠DCE+∠BCD=90°-∠DCE+∠DCE+90°-∠DCE=180°-∠DCE. (3)结论:∠DAB+∠CAE=120°.理由如下:∵∠DAB+∠CAE=∠DAE+∠CAE+∠BAC+∠CAE=∠DAC+∠EAB,又∵∠DAC=∠EAB=60°,∴∠DAB+∠CAE=60°+60°=120°.故答案为:∠DAB+∠CAE=120°.【点睛】本题考查三角形的内角和定理,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4、∠BCD,两直线平行,同旁内角互补,∠ABC+∠BCD,90,三角形内角和等于180°,90【解析】【分析】根据题意利用AB∥CD得∠ABC+∠BCD=180;等式的性质得∠DBC+∠ACB=(∠ABC+∠ACD),进而由三角形内角和为180°得∠BOC=90°.【详解】解:∵AB∥CD(已知),∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补),∵BD平分∠ABC,AC平分∠BCD(已知),∴∠DBC=∠ABC,∠ACB=∠BCD(角平分线定义),∴∠DBC+∠ACB=(∠ABC+∠BCD)(等式性质),即∠DBC+∠ACB=90°,∴∠DBC+∠ACB+∠BOC=180°(三角形内角和等于180°),∴∠BOC=90°(等式性质),故答案为:∠BCD,两直线平行,同旁内角互补,∠ABC+∠BCD,90,三角形内角和等于180°,90.【点睛】本题考查平行线的性质,等式的性质,三角形内角和定理,角平分线的性质等,解题的关键是掌握相关性质的应用.5、【解析】【分析】根据外角的性质,求得,根据角平分线的定义可得,根据三角形的内角和求得,角平分线的性质可得,根据三角形内角和即可求解.【详解】解:∵,∴,∵平分∴,由三角形内角和的性质可得,,∵平分∴,由三角形内角和的性质可得,.【点睛】此题考查了三角形内角和的性质、外角的性质以及角平分线的定义,解题的关键是掌握并灵活运用相关性质进行求解.
相关试卷
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课堂检测,共22页。试卷主要包含了下列图形中,不具有稳定性的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课后练习题,共21页。试卷主要包含了如图,是的中线,,则的长为,若三角形的两边a,若一个三角形的三个外角之比为3,如图,等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课时作业,共21页。试卷主要包含了如图,已知,,,则的度数为等内容,欢迎下载使用。