![2022年必考点解析冀教版七年级数学下册第九章 三角形定向测试试题(名师精选)第1页](http://img-preview.51jiaoxi.com/2/3/12767433/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析冀教版七年级数学下册第九章 三角形定向测试试题(名师精选)第2页](http://img-preview.51jiaoxi.com/2/3/12767433/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析冀教版七年级数学下册第九章 三角形定向测试试题(名师精选)第3页](http://img-preview.51jiaoxi.com/2/3/12767433/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版七年级下册第九章 三角形综合与测试习题
展开
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试习题,共27页。试卷主要包含了如图,在ABC中,点D,如图,已知△ABC中,BD,下列图形中,不具有稳定性的是,如图,图形中的的值是等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将△ABC沿着DE减去一个角后得到四边形BCED,若∠BDE和∠DEC的平分线交于点F,∠DFE=α,则∠A的度数是( )A.180°﹣α B.180°﹣2α C.360°﹣α D.360°﹣2α2、将一张正方形纸片ABCD按如图所示的方式折叠,CE、CF为折痕,点B、D折叠后的对应点分别为B'、D',若∠ECF=21°,则∠B'CD'的度数为( )A.35° B.42° C.45° D.48°3、当三角形中一个内角是另一个内角的2倍时,我们称此三角形为“特征三角形”,其中称为“特征角”.如果一个“特征三角形”的“特征角”为60°,那么这个“特征三角形”的最大内角的度数是( )A.80° B.90° C.100° D.120°4、如图,在ABC中,点D、E分别是AC,AB的中点,且,则( )A.12 B.6 C.3 D.25、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )A.3cm B.6cm C.10cm D.12cm6、下列长度的三条线段能组成三角形的是( )A.3,6,9 B.5,6,8 C.1,2,4 D.5,6,157、如图,已知△ABC中,BD、CE分别是△ABC的角平分线,BD与CE交于点O,如果设∠BAC=n°(0<n<180),那么∠BOE的度数是( )A.90°n° B.90°n° C.45°+n° D.180°﹣n°8、下列图形中,不具有稳定性的是( )A. B.C. D.9、如图,图形中的的值是( )A.50 B.60 C.70 D.8010、有下列长度的三条线段,其中能组成三角形的是( )A.4,5,9 B.2.5,6.5,10 C.3,4,5 D.5,12,17第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在△ABC中,三边为、、,如果,,,那么的取值范围是_____.2、如图,中,已知点D、E、F分别为BC、AD、CE的中点,设的面积为,的面积为,则______.3、如图,△ABC中,点D在BC的延长线上,,与的平分线相交于点,得;与的平分线相交于点,得;…;与的平分线相交于点,得,=__________.4、将△ABC沿着DE翻折,使点A落到点A'处,A'D、A'E分别与BC交于M、N两点,且DE∥BC.已知∠A'NM=20°,则∠NEC=_____度.5、如图,从A处观测C处的仰角是,从B处观测C处的仰角,则从C处观测A,B两处的视角的度数是__________.三、解答题(5小题,每小题10分,共计50分)1、如图,点C,B分别在直线MN,PQ上,点A在直线MN,PQ之间,MN∥PQ.(1)如图1,求证:∠A=∠MCA+∠PBA;(2)如图2,过点C作CD∥AB,点E在PQ上,∠ECM=∠ACD,求证:∠A=∠ECN;(3)在(2)的条件下,如图3,过点B作PQ的垂线交CE于点F,∠ABF的平分线交AC于点G,若∠DCE=∠ACE,∠CFB=∠CGB,求∠A的度数.2、已知:如图,AD是△ABC的角平分线,DE∥AC,DE交AB于点E,DF∥AB,DF交AC于点F.求证:DA平分∠EDF.3、将一副三角板中的两块直角三角尺的直角顶点C按如图1方式叠放在一起,其中,.(1)若,则的度数为_______;(2)直接写出与的数量关系:_________;(3)直接写出与的数量关系:__________;(4)如图2,当且点E在直线的上方时,将三角尺固定不动,改变三角尺的位置,但始终保持两个三角尺的顶点C重合,这两块三角尺是否存在一组边互相平行?请直接写出角度所有可能的值___________.4、如图所示,AB//CD,G为AB上方一点,E、F分别为AB、CD上两点,∠AEG=4∠GEB,∠CFG=2∠GFD,∠GEB和∠GFD的角平分线交于点H,求∠G+∠H的值.5、如图1,我们把一副两个三角板如图摆放在一起,其中OA,OD在一条直线上,∠B=45°,∠C=30°,固定三角板ODC,将三角板OAB绕点O按顺时针方向旋转,记旋转角∠AOA'=α(0<α<180°).(1)在旋转过程中,当α为 度时,A'B'OC,当α为 度时,A'B'⊥CD;(2)如图2,将图1中的△OAB以点O为旋转中心旋转到△OA'B'的位置,求当α为多少度时,OB'平分∠COD;拓展应用:(3)当90°<α<120°时,连接A'D,利用图3探究∠B'A'D+∠B'OC+∠A'DC值的大小变化情况,并说明理由. -参考答案-一、单选题1、B【解析】【分析】根据∠DFE=α得到∠FDE+∠FED,再根据角平分线的性质求出∠BDE+∠CED=360°-2α,利用外角的性质得到∠ADE+∠AED=2α,最后根据三角形内角和求出结果.【详解】解:∵∠DFE=α,∴∠FDE+∠FED=180°-α,由角平分线的定义可知:∠BDF=∠FDE,∠CEF=∠FED,∴∠BDE+∠CED=2∠FDE+2∠FED=360°-2α,∴∠ADE+∠AED=180°-∠BDE +180°-∠CED=2α,∴∠A=180°-(∠ADE+∠AED)=180°-2α,故选B.【点睛】本题考查了角平分线的定义,三角形内角和,三角形外角的性质,解题的关键是利用角平分线得到相等的角,根据内角和进行计算.2、D【解析】【分析】可以设∠ECB'=α,∠FCD'=β,根据折叠可得∠DCE=∠D'CE,∠BCF=∠B'CF,进而可求解.【详解】解:设∠ECB'=α,∠FCD'=β,根据折叠可知:∠DCE=∠D'CE,∠BCF=∠B'CF,∵∠ECF=21°,∴∠D'CE=21°+β,∠B'CF=21°+α,∵四边形ABCD是正方形,∴∠BCD=90°,∴∠D'CE+∠ECF+∠B'CF=90°∴21°+β+21°+21°+α=90°,∴α+β=27°,∴∠B'CD'=∠ECB'+∠ECF+∠FCD'=α+21°+β=21°+27°=48°则∠B'CD'的度数为48°.故选:D.【点睛】本题考查了正方形与折叠问题,解决本题的关键是熟练运用折叠的性质.3、B【解析】【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最大内角即可.【详解】解:由题意得:α=2β,α=60°,则β=30°,180°-60°-30°=90°,故选B.【点睛】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.4、C【解析】【分析】由于三角形的中线将三角形分成面积相等的两部分,则S△ABD=S△ABC=6,然后利用S△BDE=S△ABD求解.【详解】解:∵点D为AC的中点,∴S△ABD=S△ABC=×12=6,∵点E为AB的中点,∴S△BDE=S△ABD=×6=3.故选:C.【点睛】本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键. 三角形的中线把三角形分成面积相同的两部分.5、C【解析】【分析】设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为cm,则 所以A,B,D不符合题意,C符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.6、B【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行解答即可得.【详解】解:根据三角形的三边关系,得A、3+6=9,不能组成三角形,选项说法错误,不符合题意;B、6+5=11>8,能组成三角形,选项说法正确,符合题意;C、1+2=3<4,不能够组成三角形,选项说法错误,不符合题意;D、5+6=11<15,不能够组成三角形,选项说法错误,不符合题意;故选B.【点睛】本题考查了构成三角形的条件,解题的关键是掌握三角形的三边关系.7、A【解析】【分析】根据BD、CE分别是△ABC的角平分线和三角形的外角,得到,再利用三角形的内角和,得到,代入数据即可求解.【详解】解:∵BD、CE分别是△ABC的角平分线,∴,,∴,∵,∴.故答案选:A.【点睛】本题考查三角形的内角和定理和外角的性质.涉及角平分线的性质.三角形的内角和定理:三角形的内角和等于.三角形的一个外角等于与它不相邻的两个内角之和.8、B【解析】【分析】由三角形的稳定性的性质判定即可.【详解】A选项为三角形,故具有稳定性,不符合题意,故错误;B选项为四边形,非三角形结构,故不具有稳定性,符合题意,故正确;C选项为三个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误;D选项为两个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误.故选B.【点睛】本题考查了三角形的稳定性,如果三角形的三条边固定,那么三角形的形状和大小就完全确定了,三角形的这个特征,叫做三角形的稳定性注意①要看图形是否具有稳定性,关键在于它的结构是不是三角形结构②除了三角形外,其他图形都不具备稳定性,因此在生产建设中,三角形的应用非常广泛.9、B【解析】【分析】根据三角形外角的性质:三角形一个外角的度数等于与其不相邻的两个内角的度数和进行求解即可.【详解】解:由题意得: ∴,∴,故选B.【点睛】本题主要考查了三角形外角的性质,解一元一次方程,熟知三角形外角的性质是解题的关键.10、C【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.【详解】解:根据三角形的三边关系,得,、,不能够组成三角形,不符合题意;、,不能够组成三角形,不符合题意;、,能够组成三角形,符合题意;、,不能组成三角形,不符合题意;故选:C.【点睛】此题主要考查了三角形三边关系,解题的关键是掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.二、填空题1、4<x<28【解析】【分析】根据三角形三边的关系:两边之和大于第三边,两边之差小于第三边解答即可;【详解】解:由题意得:解得:4<x<28.故答案为:4<x<28【点睛】本题考查了三角形三边的关系,熟练掌握三角形三边的关系是解题的关键.2、4:1##4【解析】【分析】利用三角形的中线的性质证明再证明从而可得答案.【详解】解: 点F为CE的中点, 点E为AD的中点, 故答案为:【点睛】本题考查的是与三角形的中线有关的面积的计算,掌握“三角形的中线把一个三角形的面积分为相等的两部分”是解本题的关键.3、【解析】【分析】结合题意,根据角平分线、三角形外角、三角形内角和的性质,得,同理得;再根据数字规律的性质分析,即可得到答案.【详解】解:根据题意,,与的平分线交于点,∴∠A1BC=,∠ACA1=,∴,∵,∴,∵,∴=,同理,得;;;…,∴.故答案为:.【点睛】本题考查了三角形性质和数字规律的知识;解题的关键是熟练掌握三角形内角和、三角形外角、角平分线、数字规律的性质,从而完成求解.4、140【解析】【分析】根据对顶角相等,可得∠CNE=20°,再由DE∥BC,可得∠DEN=∠CNE=20°,然后根据折叠的性质可得∠AED=∠DEN=20°,即可求解.【详解】解:∵∠A′NM=20°,∠CNE=∠A′NM,∴∠CNE=20°,∵DE∥BC,∴∠DEN=∠CNE=20°,由翻折性质得:∠AED=∠DEN=20°,∴∠AEN=40°,∴∠NEC=180°﹣∠AEN=180°﹣40°=140°.故答案为:140【点睛】本题主要考查了折叠的性质,平行线的性质,熟练掌握图形折叠前后对应角相等,两直线平行,内错角相等是解题的关键.5、【解析】【分析】根据三角形外角的性质求解即可.【详解】解:由题意可得,,∴,故答案为:【点睛】此题考查了三角形外角的性质,解题的关键是掌握三角形外角的有关性质.三、解答题1、(1)见解析;(2)见解析;(3)72°.【解析】【分析】(1)过点A作平行线,证出三条直线互相平行,由平行得出与∠ACM和∠ABP相等的角即可得出结论;(2)由CD∥AB,可得同旁内角互补,再结合∠ECM与∠ECN的邻补角关系,可得结论;(3)延长CA交PQ于点H,先证明∠MCA=∠ACE=∠ECD,∠ABP=∠NCD,再设∠MCA=∠ACE=∠ECD=x,由(1)可知∠CFB=∠FCN+∠FBQ,从而∠CFB=270-2x,列出方程解得x值,则不难求得答案.【详解】解:(1)证明:过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠A=∠MCA+∠PBA;(2)∵CD∥AB,∴∠A+∠ACD=180°,∵∠ECM+∠ECN=180°,又∠ECM=∠ACD,∴∠A=∠ECN;(3)如图,延长CA交PQ于点H,∵∠ECM=∠ACD,∠DCE=∠ACE,∴∠MCA=∠ACE=∠ECD,∵MN∥PQ,∴∠MCA=∠AHB,∵∠CAB=∠AHB+∠PBA,且由(2)知∠CAB=∠ECN,∴∠ABP=∠NCD,设∠MCA=∠ACE=∠ECD=x,由(1)可知∠CFB=∠FCN+∠FBQ,∴∠CFB=270-2x,由(1)可知∠CGB=∠MCG+∠GBP,∴∠CGB=135°−x,∴270°−2x= (135°−x) ,解得:x=54°,∴∠AHB=54°,∴∠ABP=∠NCD=180°-54°×3=18°,∴∠CAB=54°+18°=72°.【点睛】本题考查了平行线的性质及一元一次方程在计算问题中的应用,三角形的内角和定理以及三角形的外角性质,理清题中的数量关系并正确列式是解题的关键.2、见解析【解析】【分析】根据角平分线的定义可得∠DAE=∠DAF,再根据两直线平行,内错角相等可得∠ADE=∠DAF,∠ADF=∠DAE,从而得解.【详解】解:∵DE∥AC,∴∠ADE=∠DAF,∵DF∥AB,∴∠ADF=∠DAE,又∵AD是△ABC的角平分线,∴∠DAE=∠DAF,∴∠ADE=∠ADF. DA平分∠EDF.【点睛】本题综合考查了平行线和角平分线的性质,注意等量代换的应用.3、(1);(2);(3);(4)存在一组边互相平行;或或或或.【解析】【分析】(1)根据垂直的性质结合图形求解即可;(2)根据垂直的性质及各角之间的关系即可得出;(3)由(2)可得,根据图中角度关系可得,将其代入即可得;(4)根据题意,分五种情况进行分类讨论:①当时;②当时;③当时;④当时;⑤当时;分别利用平行线的性质进行求解即可得.【详解】解:(1)∵,∴,∵,∴,故答案为:;(2)∵,,∴,,即,,∴,故答案为:;(3)由(2)得:,∴,由图可知:,∴,故答案为:;(4)①如图所示:当时,,由(2)可知:;②如图所示:当时,;③如图所示:当时,,∴;④如图所示:当时,,∴;⑤如图所示:当时,延长AC交BE于点F,∴,∵,∴,∴;综合可得:的度数为:或或或或,故答案为:或或或或.【点睛】题目主要考查垂直的性质、各角之间的计算、平行线的性质等,熟练掌握平行线的性质进行分类讨论是解题关键.4、∠G+∠H=36°.【解析】【分析】先设,,由题意可得,,由,,从而求出;根据题意得, , 从而得到的值.【详解】解:设,,由题意可得,,, 由,,解得,;由靴子图AEGFC知,,即由靴子图AEHFC知,,即即,,【点睛】本题考查平行线的性质,解题的关键是设,,由题意得到的关系式,正确将表示成的形式.5、(1)30,90;(2)105°;(3)不变,理由见解析【解析】【分析】(1)根据题意作出图形,根据所给的条件求解即可;(2)由旋转的性质可得∠AOB=∠A'OB'=45°,由角的数量关系可求解;(3)由α可分别表示∠B'A'D,∠B'OC,∠A'DC再求和即可.【详解】解:(1)当A'B'∥OC时,∴∠A′OC+∠A′=180°,∵∠A′=90°,∴∠A′OC=90°,∴∠AOA′=180°﹣90°﹣60°=30°,即α=30°;当A'B'⊥CD时,则OA′∥CD,∴∠AOA′=∠ODC=90°,即α=90°;故答案为:30;90.(2)∵△OAB以O为中心顺时针旋转得到△OA′B′,∴∠AOB=∠A'OB'=45°,∵∠COD=60°,OB′平分∠COD,∴∠DOB'=30°,∴∠AOA'=180°﹣∠DOB′﹣∠A'OB′=180°﹣30°﹣45°=105°,即当α为105°时,OB'平分∠COD;(3)不变,理由如下:∵∠AOA′=α,∴∠B′OD=180°﹣45°﹣α=135°﹣α,∴∠B′OC=60°﹣(135°﹣α)=α﹣75°,设∠A′DC=β,∴∠A′DO=90°﹣β,∴∠B′OD+∠A′DO=∠B'A'D+∠B′,即135°﹣α+90°﹣β=∠B'A'D+45°,解得∠B'A'D=180°﹣α﹣β,∴∠B'A'D+∠B'OC+∠A'DC=180°﹣α﹣β+α﹣75°+β=105°.【点睛】本题考查了三角板的角度计算,角平分线的定义,旋转的性质,三角形的内角和与外角的性质,平行线的性质,根据题意作出图形是解题的关键.
相关试卷
这是一份冀教版七年级下册第九章 三角形综合与测试练习题,共21页。
这是一份冀教版七年级下册第九章 三角形综合与测试同步测试题,共25页。试卷主要包含了如图,点D等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试课后作业题,共23页。试卷主要包含了若三角形的两边a,如图,直线l1等内容,欢迎下载使用。