搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新冀教版七年级数学下册第九章 三角形同步测评试卷(精选含答案)

    2021-2022学年最新冀教版七年级数学下册第九章 三角形同步测评试卷(精选含答案)第1页
    2021-2022学年最新冀教版七年级数学下册第九章 三角形同步测评试卷(精选含答案)第2页
    2021-2022学年最新冀教版七年级数学下册第九章 三角形同步测评试卷(精选含答案)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第九章 三角形综合与测试课堂检测

    展开

    这是一份初中数学第九章 三角形综合与测试课堂检测,共23页。试卷主要包含了若三角形的两边a,如图,直线l1l2,被直线l3等内容,欢迎下载使用。
    冀教版七年级数学下册第九章 三角形同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、若一个三角形的两条边的长为5和7,那么第三边的长可能是(       A.2 B.10 C.12 D.132、将一副直角三角板按如图所示的位置摆放,若含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则的度数是(       A.45° B.60° C.75° D.85°3、如图,在中,若点使得,则的(       A.高 B.中线 C.角平分线 D.中垂线4、若三角形的两边ab的长分别为3和4,则其第三边c的取值范围是(     A.3<c<4 B.2≤c≤6 C.1<c<7 D.1≤c≤75、如图,在中,D延长线上一点,,则的度数为(       A. B. C. D.6、如图,直线l1l2,被直线l3l4所截,并且l3l4,∠1=46°,则∠2等于(  )A.56° B.34° C.44° D.46°7、如图所示,一副三角板叠放在一起,则图中等于(       A.105° B.115° C.120° D.135°8、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外面时,此时测得∠1=112°,∠A=40°,则∠2的度数为(       A.32° B.33° C.34° D.38°9、如图,四边形ABCD是梯形,的角平分线交于点E的角平分线交于点F,则的大小关系为(     A. B. C. D.无法确定10、已知,一块含30°角的直角三角板如图所示放置,,则等于(       A.140° B.150° C.160° D.170°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC中,点DCB的延长线上,∠A=60°,∠ABD=110°,则∠C等于___.2、如图,BE平分AD于点E,连接CEAFCD的延长线于点F,若,则的度数为______.3、如图,一副三角板按如图放置,则∠DOC的度数为______.4、如图,∠ABD=80°,∠C=38°,则∠D=___度.5、如图,将一张三角形纸片ABC的一角折叠,使得点A落在四边形BCDE的外部A'的位置,且A'与点C在直线AB的异侧,折痕为DE,已知∠C=90°,∠A=30°.若保持△ADE的一边与 BC行,则∠ADE的度数______.三、解答题(5小题,每小题10分,共计50分)1、如图,BD的角平分线,BEAC边上的中线.(1)若的周长为13,,求AB的长.(2)若,求的度数.2、在△ABC中,∠A-∠B=30°,∠C=4∠B,求∠A、∠B、∠C的度数3、已知:如图,在△ABC中,AB3AC51)直接写出BC的取值范围是     2)若点DBC边上的一点,∠BAC85°,∠ADC140°,∠BAD=∠B,求∠C4、(1)先化简,再求值:,其中a=4.(2)若abc分别为三角形的三边,化简:|abc|+|bca|+|ca+b|5、如图,在三角形ABC中,∠ABC与∠ACB的角平分线交于点P(1)当∠A=60°时,求∠BPC的的度数;(提示:三角形内角和180°);(2)当∠A=α°时,直接写出∠A与∠BPC的数量关系. -参考答案-一、单选题1、B【解析】【分析】根据在三角形中三边关系可求第三边长的范围,再选出答案.【详解】解:设第三边长为x,则由三角形三边关系定理得7-5<x<7+5,即2<x<12.只有选项B符合题意,故选:B.【点睛】本题考查了三角形三边关系,掌握三角形的三边关系是解题的关键.三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.2、C【解析】【分析】先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.【详解】解:如图:∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,∴∠α=∠D+∠DGB=30°+45°=75°.故选C【点睛】本题主要考查三角形的外角的性质,掌握三角形的内角和定理和三角形外角的性质是解答本题的关键.3、B【解析】【分析】根据三角形的中线定义即可作答.【详解】解:∵BD=DCAD是△ABC的中线,故选:B.【点睛】本题考查了三角形的中线概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.4、C【解析】【分析】根据三角形的两边之和大于第三边,两边之差小于第三边,即可求解.【详解】解:∵三角形的两边ab的长分别为3和4,∴其第三边c的取值范围是故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.5、B【解析】【分析】根据三角形外角的性质可直接进行求解.【详解】解:∵故选B.【点睛】本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.6、C【解析】【分析】依据l1l2,即可得到∠3=∠1=46°,再根据l3l4,可得∠2=90°﹣46°=44°.【详解】解:如图:l1l2,∠1=46°,∴∠3=∠1=46°,又∵l3l4∴∠2=90°﹣46°=44°,故选:C.【点睛】本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.7、A【解析】【分析】根据直角三角板各角的度数和三角形外角性质求解即可.【详解】解:如图,∠C=90°,∠DAE=45°,∠BAC=60°,∴∠CAO=∠BAC-∠DAE=60°-45°=15°,=∠C+∠CAO=90°+15°=105°,故选:A.【点睛】本题考查三角板中的度数计算、三角形的外角性质,熟知三角板各角度数,掌握三角形的外角性质是解答的关键.8、A【解析】【分析】由折叠的性质可知,再由三角形外角的性质即可求出的大小,再次利用三角形外角的性质即可求出的大小.【详解】如图,设线段和线段交于点F由折叠的性质可知,即,即故选A.【点睛】本题考查折叠的性质,三角形外角的性质.利用数形结合的思想是解答本题的关键.9、B【解析】【分析】ADBC可得∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,由角平分线的性质可得∠AEB=90°,∠DFC=90°,由三角形内角和定理可得到∠1=∠2=90°.【详解】解:∵ADBC∴∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,∵∠DAB与∠ABC的角平分线交于点E,∠CDA与∠BCD的角平分线交于点F∴∠BAE=BAD,∠ABE=ABC,∠CDF=ADC,∠DCF=BCD∴∠BAE+∠ABE=(∠BAD+∠ABC)=90°,CDF+∠DCF=(∠ADC+∠BCD) =90°,∴∠1=180°-(∠BAE+∠ABE)= 90°,∠2=∠CDF+∠DCF= 90°,∴∠1=∠2=90°,故选:B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形内角和定理,灵活运用这些性质进行推理是本题的关键.10、D【解析】【分析】利用三角形外角与内角的关系,先求出∠3,利用平行线的性质得到∠4的度数,再利用三角形外角与内角的关系求出∠1【详解】解:∵∠C90°,∠2=∠CDE50°,3=∠C+CDE90°+50°140°.ab∴∠4=∠3140°.∵∠A30°∴∠1=∠4+A140°+30°170°.故选:D【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.二、填空题1、50°【解析】【分析】首先根据平角的概念求出的度数,然后根据三角形内角和定理即可求出的度数.【详解】解:∵∠ABD=110°,故答案为:50°.【点睛】此题考查了平角的概念,三角形三角形内角和定理,解题的关键是熟练掌握平角的概念,三角形三角形内角和定理.2、80°##80度【解析】【分析】先根据,得出,可证AD∥BC,再证∠BAD=∠BCD,得出∠AEB=∠F,然后证∠ABC=2∠CBE=2∠F,得出∠ADC=2∠F,利用三角形内角和得出∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F,根据平角得出∠AEB+∠CED=180°-∠BEC=180°-80°=100°,列方程∠F+180°-5∠F=100°求出∠F=20°即可.【详解】解:∵∴∠ABC+∠BCD=180°,AD∥BC∴∠BAD+∠ADC=180°,∠BAF+∠F=180°,∵∠ADC+∠BCD=180°,∴∠BAD=∠BCD∵∠BAF=∠BAD+∠DAF∴∠BAF+∠AEB=180°,∴∠AEB=∠FAD∥BC∴∠CBE=∠AEBBE平分∴∠ABC=2∠CBE=2∠F∴∠ADC=2∠FCED中,∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F∴∠AEB+∠CED=180°-∠BEC=180°-80°=100°,∴∠F+180°-5∠F=100°,解得∠F=20°,故答案为80°.【点睛】本题考查平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,掌握平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,关键是证出∠ADC=2∠F3、【解析】【分析】根据题意得:∠ACB=30°,∠ACD=45°,∠D=90°,从而得到∠OCD=15°,再由再由直角三角形两锐角互余,即可求解.【详解】解:根据题意得:∠ACB=30°,∠ACD=45°,∠D=90°,∴∠OCD=∠ACD-∠ACB=15°,∴∠DOC=90°-∠OCD=75°.故答案为:75°【点睛】本题主要考查了直角三角形的性质,根据题意得到∠ACB=30°,∠ACD=45°,∠D=90°是解题的关键.4、5、45°30°【解析】【分析】DA'BCEA'BC两种情况,分别画出图形,即可解决问题.【详解】解:当DA'BC时,如图,A'DA=∠ACB=90°,∵△ADE沿DE折叠到A'DE∴∠ADE=∠A'DE=ADA′=45°,EA'BC时,如图,在△ABC中,∠B=180°-∠C-∠A=60°,∴∠2=∠ABC=60°,由折叠可知,∠A′=∠A=30°,在△AEF中,∠A′+∠2+∠AFE=180°,∴∠2=180°-∠A′-∠AFE=150°-∠AFE在四边形BCDF中,∠1+∠C+∠B+∠BFD=360°,∴∠1=360°-∠C-∠B-∠BFD=210°-∠BFD∵∠BFD=∠AFE∴∠1-∠2=210°-150°=60°,∴∠1=∠2+60°=120°,∵△ADE沿DE折叠到A'DE∴∠ADE=∠A'DE=ADA′=(180°-∠1)=30°,综上所述,∠ADE的度数为:45°或30°.故答案为:45°或30°.【点睛】本题主要考查了翻折的性质,平行线的性质等知识,能根据题意,运用分类讨论思想分别画出图形是解题的关键.三、解答题1、(1)3;(2)【解析】【分析】(1)首先根据中线的性质得到,然后根据的周长为13,即可求出AB的长;(2)首先根据BD的角平分线得到,然后根据三角形内角和定理即可求出的度数.【详解】(1)∵BEAC边上的中线,又∵的周长为13,(2)∵BD的角平分线,又∵【点睛】此题考查三角形中线和角平分线的概念,三角形内角和定理的运用,解题的关键是熟练掌握三角形中线和角平分线的概念,三角形内角和定理.2、【解析】【分析】根据三角形内角和定理,以及已知条件列三元一次方程组解方程求解即可【详解】在△ABC中,,∠A-∠B=30°,∠C=4∠B①-②得将③代入④解得,【点睛】本题考查了三角形内角和定理,解三元一次方程组,正确的计算是解题的关键.3、12BC8;(225°【解析】【分析】(1)根据三角形三边关系解答即可;(2)根据三角形外角性质和三角形内角和解答即可.【详解】解:(1)∵AC-ABBCAC+ABAB=3,AC=5.∴2<BC<8,故答案为:2<BC<8(2)∵∠ADC是△ABD的外角∴∠ADC=∠B+∠BAD=140∵∠B=∠BAD∴∠B∵∠B+∠BAC+∠C=180∴∠C=180﹣∠B﹣∠BAC即∠C=180﹣70﹣85=25【点睛】本题考查了三角形第三边的取值范围,三角形内角和定理和三角形外角的性质,能根据三角形的外角的性质求出∠B的度数是解此题的关键.4、(1)a-1;3;(2)-ab+3c【解析】【分析】(1)先根据单项式乘以多项式法则及平方差公式展开,合并得出最简结果,再代入求值即可得答案;(2)根据三角形的三边关系可得绝对值内的式子的符号,根据绝对值的性质化简即可得答案.【详解】(1)a(1-4a)+(2a+1)(2a-1)a-4a2+4a2-1a-1,a=4时,原式=4-1=3.(2)∵abc为三角形三边的长,abcacbbca∴|abc|+|bca|+|ca+b|=|a-(bc)|+|b-(ca)|+|(cb)-a|bcaacbcba=-ab+3c【点睛】本题考查单项式乘以多项式法则、平方差公式、三角形三边关系及绝对值的性质,三角形任意两边的和大于第三边;任意两边的差小于第三边;熟练掌握相关运算法则及性质是解题关键.5、 (1)120°(2)∠BPC=【解析】【分析】(1)根据BP是∠ABC的平分线,得出∠PBC=.根据CP是∠ACB的平分线,∠PCB=,根据∠A=60°,得出=120°,求∠PBC+∠PCB==60°即可;(2)根据BP是∠ABC的平分线,得出∠PBC=.根据CP是∠ACB的平分线,得出∠PCB=,根据∠A=α°,得出=180°-α°,可求∠PBC+∠PCB=即可.(1)解:如图,∵BP是∠ABC的平分线,∴∠PBC=.(角平分线定义)CP是∠ACB的平分线,∴∠PCB=∴∠PBC+∠PCB=∵∠A=60°,=120°,∴∠PBC+∠PCB==60°,∴∠BPC=180°-∠PBC-∠PCB=180°-(∠PBC+∠PCB)=180°-60°=120°(2)如图,∵BP是∠ABC的平分线,∴∠PBC=.(角平分线定义)CP是∠ACB的平分线,∴∠PCB=∴∠PBC+∠PCB=∵∠A=α°,=180°-α°,∴∠PBC+∠PCB=∴∠BPC=180°-∠PBC-∠PCB=180°-(∠PBC+∠PCB)=180°-90°=90°∴∠BPC=【点睛】本题考查角平分线定义,三角形内角和,掌握角平分线定义,三角形内角和是解题关键. 

    相关试卷

    初中数学第九章 三角形综合与测试课后作业题:

    这是一份初中数学第九章 三角形综合与测试课后作业题,共21页。

    初中冀教版第九章 三角形综合与测试精练:

    这是一份初中冀教版第九章 三角形综合与测试精练,共21页。试卷主要包含了如图,在中,若点使得,则是的等内容,欢迎下载使用。

    初中冀教版第九章 三角形综合与测试同步测试题:

    这是一份初中冀教版第九章 三角形综合与测试同步测试题,共24页。试卷主要包含了下列图形中,不具有稳定性的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map