![2022年必考点解析冀教版七年级数学下册第九章 三角形课时练习试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12767445/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析冀教版七年级数学下册第九章 三角形课时练习试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12767445/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析冀教版七年级数学下册第九章 三角形课时练习试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12767445/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版七年级下册第九章 三角形综合与测试巩固练习
展开
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试巩固练习,共20页。试卷主要包含了下列各图中,有△ABC的高的是,如图,在ABC中,点D,下列图形中,不具有稳定性的是,如图,为估计池塘岸边A等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,则∠BOC等于( )A.65° B.80° C.115° D.50°2、已知△ABC的内角分别为∠A、∠B、∠C,下列能判定△ABC是直角三角形的条件是( )A.∠A=2∠B=3∠C B.∠C=2∠B C.∠A+∠B=∠C D.∠A:∠B:∠C= =3:4:53、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )A. B. C. D.4、下列各图中,有△ABC的高的是( )A. B.C. D.5、如图,在ABC中,点D、E分别是AC,AB的中点,且,则( )A.12 B.6 C.3 D.26、下列长度的三条线段能组成三角形的是( )A.1,6,6 B.2,3,5 C.3,4,8 D.5,6,117、下列图形中,不具有稳定性的是( )A.等腰三角形 B.平行四边形 C.锐角三角形 D.等边三角形8、有下列长度的三条线段,其中能组成三角形的是( )A.4,5,9 B.2.5,6.5,10 C.3,4,5 D.5,12,179、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB=10米,A、B间的距离不可能是( )A.5米 B.10米 C.15米 D.20米10、下图中能体现∠1一定大于∠2的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AB=DE,AC=DF,BF=CE,点B、F、C、E在一条直线上,AB=4,EF=6,求△ABC中AC边的取值范围.2、若等腰三角形两底角平分线相交所形成的钝角是128°,则这个等腰三角形的顶角的度数是_____.3、如图,一副三角板按如图放置,则∠DOC的度数为______.4、在△ABC中,三边为、、,如果,,,那么的取值范围是_____.5、如图,AD是BC边上的中线,AB=5 cm,AD=4 cm,△ABD的周长是12 cm,则BC的长是____cm.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,D为BC延长线上一点,DE⊥AB于E,交AC于F,若∠A=40°,∠D=45°,求∠ACB的度数.2、已知:如图,△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠AEC的度数.3、如图,在中,AD是BC边上的高,CE平分,若,,求的度数.4、(1)如图所示,直角三角板和直尺如图放置.若,试求出的度数.(2)已知ABC的三边长a、b、c,化简.5、如图,已知△ABC的高AD和角平分线AE,∠B=26°,∠ACD=56°,求(1)∠CAD的度数;(2)∠AED的度数. -参考答案-一、单选题1、C【解析】【分析】根据题意画出图形,求出∠ABC+∠ACB =130°,根据角平分线的定义得到∠CBD=∠ABC,∠ECB=∠ACB,再根据三角形内角和定理和角的代换即可求解.【详解】解:如图,∵∠A=50°,∴∠ABC+∠ACB=180°-∠A=130°,∵BD、CE分别是∠ABC、∠ACB的平分线,∴∠CBD=∠ABC,∠ECB=∠ACB,∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- (∠ABC+∠ACB)=180°- ×130°=115°.故选:C【点睛】本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.2、C【解析】【分析】根据三角形内角和定理依次计算判断.【详解】解:A、设∠C=2x,则∠B=3x,∠A=6x,∵,∴,解得,∴∠A=6x=,∴△ABC不是直角三角形,故该选项不符合题意;B、当∠C=20°,∠B=10°时符合题意,但是无法判断△ABC是直角三角形,故该选项不符合题意;C、∵∠A+∠B=∠C,,∴,即△ABC是直角三角形,故该选项符合题意;D、设∠A=3x,∠B=4x,∠C=5x,∵,∴,解得,∴,∴△ABC不是直角三角形,故该选项不符合题意;故选:C.【点睛】此题考查了三角形内角和定理,熟记三角形内角和为180度并应用是解题的关键.3、B【解析】【分析】根据三角尺可得,根据三角形的外角性质即可求得【详解】解:故选B【点睛】本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.4、B【解析】【分析】利用三角形的高的定义可得答案.【详解】解:∵选项B是过顶点C作的AB边上的高,∴有△ABC的高的是选项B,故选:B.【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.5、C【解析】【分析】由于三角形的中线将三角形分成面积相等的两部分,则S△ABD=S△ABC=6,然后利用S△BDE=S△ABD求解.【详解】解:∵点D为AC的中点,∴S△ABD=S△ABC=×12=6,∵点E为AB的中点,∴S△BDE=S△ABD=×6=3.故选:C.【点睛】本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键. 三角形的中线把三角形分成面积相同的两部分.6、A【解析】【分析】根据构成三角形的条件逐项分析判断即可.三角形的任意两边之和大于第三边,任意两边之差小于第三边,根据原理分别计算两条较短边的和与最长边比较,再逐一分析即可.【详解】解:A. 1+6>6,能组成三角形,故该选项正确,符合题意;B. 2+3=5,不能组成三角形,故该选项不正确,不符合题意; C. 3+4<8,不能组成三角形,故该选项不正确,不符合题意; D. 5+6=11,不能组成三角形,故该选项不正确,不符合题意;故选A【点睛】本题考查了判断构成三角形的条件,解题的关键是掌握构成三角形的条件.7、B【解析】【分析】根据三角形具有稳定性,四边形不具有稳定性即可作出选择.【详解】解:平行四边形属于四边形,不具有稳定性,而三角形具有稳定性,故A符合题意;故选:B.【点睛】本题考查了多边形和三角形的性质,解题的关键是记住三角形具有稳定性,四边形不具有稳定性.8、C【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.【详解】解:根据三角形的三边关系,得,、,不能够组成三角形,不符合题意;、,不能够组成三角形,不符合题意;、,能够组成三角形,符合题意;、,不能组成三角形,不符合题意;故选:C.【点睛】此题主要考查了三角形三边关系,解题的关键是掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.9、A【解析】【分析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.10、C【解析】【分析】由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.【详解】解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;B、如图, 若两线平行,则∠3=∠2,则 若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C.【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.二、填空题1、2<AC<10【解析】【分析】由BF=CE得到 BC=EF=6,再根据三角形三边关系求解即可.【详解】解:∵BF=CE,点B、F、C、E在一条直线上,∴BF+FC=CE+FC,∴BC=EF=6,∵AB=4,∴6-4<AC<6+4,即2<AC<10,∴AC边的取值范围为2<AC<10.【点睛】本题考查三角形的三边关系,熟知一个三角形任意两边之和大于第三边,任意两边之差小于第三边是解答的关键.2、##76度【解析】【分析】先根据角平分线的定义、三角形的内角和定理求出等腰三角形两底角的度数和,再根据三角形内角和求出顶角的度数即可.【详解】解:∵∠BOC=128°,∴∠OBC+∠OCB=180°﹣∠BOC=180°﹣128°=52°,∵BO平分∠ABC,CO平分∠ACB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=104°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣104°=76°.故答案为:76°.【点睛】本题主要考查角平分线的定义和三角形内角和定理,牢记角平分线分得的两个角相等,三角形内角和是是解决本题的关键.3、【解析】【分析】根据题意得:∠ACB=30°,∠ACD=45°,∠D=90°,从而得到∠OCD=15°,再由再由直角三角形两锐角互余,即可求解.【详解】解:根据题意得:∠ACB=30°,∠ACD=45°,∠D=90°,∴∠OCD=∠ACD-∠ACB=15°,∴∠DOC=90°-∠OCD=75°.故答案为:75°【点睛】本题主要考查了直角三角形的性质,根据题意得到∠ACB=30°,∠ACD=45°,∠D=90°是解题的关键.4、4<x<28【解析】【分析】根据三角形三边的关系:两边之和大于第三边,两边之差小于第三边解答即可;【详解】解:由题意得:解得:4<x<28.故答案为:4<x<28【点睛】本题考查了三角形三边的关系,熟练掌握三角形三边的关系是解题的关键.5、6【解析】【分析】根据AD是BC边上的中线,得出为的中点,可得,根据条件可求出.【详解】解:AD是BC边上的中线,为的中点,,,△ABD的周长是12cm,,,故答案是:6.【点睛】本题考查了三角形的中线,解题的关键利用中线的性质得出为的中点.三、解答题1、95°【解析】【分析】根据三角形外角与内角的关系及三角形内角和定理解答.【详解】解:∵DF⊥AB,∠A=40°∴∠AEF=∠CED=50°,∴∠ACB=∠D+∠CED=45°+50°=95°.【点睛】本题考查了三角形外角与内角的关系:三角形的一个外角等于和它不相邻的两个内角的和.三角形内角和定理:三角形的三个内角和为180°.2、∠AEC=115°【解析】【分析】利用三角形的内角和定理求解 再利用三角形的高的含义求解 再结合角平分线的定义求解 再利用三角形的内角和定理可得答案.【详解】解: ∠BAC=80°,∠B=60°, AD⊥BC, AE平分∠DAC, 【点睛】本题考查的是三角形的高,角平分线的含义,三角形的内角和定理的应用,熟练的运用三角形的高与角平分线的定义结合三角形的内角和定理得到角与角之间的关系是解本题的关键.3、85°【解析】【分析】由高的定义可得出∠ADB=∠ADC=90,在△ACD中利用三角形内角和定理可求出∠ACB的度数,结合CE平分∠ACB可求出∠ECB的度数.由三角形外角的性质可求出∠AEC的度数,【详解】解:∵AD是BC边上的高,∴∠ADB=∠ADC=90.在△ACD中,∠ACB=180°﹣∠ADC﹣∠CAD=180°﹣90°﹣20°=70°.∵CE平分∠ACB,∴∠ECB=∠ACB=35°.∵∠AEC是△BEC的外角,,∴∠AEC=∠B+∠ECB=50°+35°=85°.答:∠AEC的度数是85°.【点睛】本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB的度数是解题的关键.4、(1)40°;(2)2b-2c【解析】【分析】(1)过F作FH∥AB,则AB∥FH∥CD,根据平行线的性质即可得到结论;(2)先根据三角形三边关系判断出a+b-c与b-a-c的符号,再把要求的式子进行化简,即可得出答案.【详解】(1)过点F作FH∥AB,∵AB∥CD,FH∥AB,∴AB∥CD∥FH,∴∠1=∠3,∠2=∠4,∴∠EFG=∠3+∠4=∠1+∠2,∵∠G=90°,∠E=30°,∴∠EFG=90°-∠E=90°-30°=60°,即∠1+∠2=60°,∵∠1=20°,∴∠2=60°-∠1=60°-20°=40°;(2)∵△ABC的三边长分别是a、b、c,∴a+b>c,b-a<c,∴a+b-c>0,b-a-c<0,∴|a+b-c|-|b-a-c|=a+b-c-(-b+a+c)=a+b-c+b-a-c=2b-2c.【点睛】本题考查了平行线的性质,三角形三边关系,用到的知识点是平行线的性质定理、三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b-c与b-a-c的符号.5、 (1)34°(2)41°【解析】【分析】(1)根据三角形内角和可得的度数;(2)先根据三角形外角性质计算出,再根据角平分线定义得到,接着再利用三角形外角性质得到.(1)解:在中,,,;(2)解:在中,,,平分,,.【点睛】本题考查角形内角和定理,解题的关键是掌握三角形内角和是,合理使用三角形外角性质计算角度.
相关试卷
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试当堂达标检测题,共21页。试卷主要包含了如图,为估计池塘岸边A,已知△ABC的内角分别为∠A,下列叙述正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第九章 三角形综合与测试同步达标检测题,共21页。试卷主要包含了如图,在中,若点使得,则是的,下列图形中,不具有稳定性的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试课后作业题,共23页。试卷主要包含了下列各图中,有△ABC的高的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)