冀教版七年级下册第九章 三角形综合与测试同步达标检测题
展开
这是一份冀教版七年级下册第九章 三角形综合与测试同步达标检测题,共23页。
冀教版七年级数学下册第九章 三角形专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,∠A=55°,∠B=45°,那么∠ACD的度数为( )A.110 B.100 C.55 D.452、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是( )A. B. C. D.3、如图,图形中的的值是( )A.50 B.60 C.70 D.804、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于( )A.180° B.210° C.360° D.270°5、一把直尺与一块三角板如图放置,若,则( )A.120° B.130° C.140° D.150°6、如图,将一个含有30°角的直角三角板放置在两条平行线a,b上,若,则的度数为( )A.85° B.75° C.55° D.95°7、如图,和相交于点O,则下列结论不正确的是( )A. B. C. D.8、当三角形中一个内角是另一个内角的2倍时,我们称此三角形为“特征三角形”,其中称为“特征角”.如果一个“特征三角形”的“特征角”为60°,那么这个“特征三角形”的最大内角的度数是( )A.80° B.90° C.100° D.120°9、如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是( )A.BE是△ABD的中线 B.BD是△BCE的角平分线C.∠1=∠2=∠3 D.S△AEB=S△EDB10、下列叙述正确的是( )A.三角形的外角大于它的内角 B.三角形的外角都比锐角大C.三角形的内角没有小于60°的 D.三角形中可以有三个内角都是锐角第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,______.2、ABC的三边长为a、b、c,且a、b满足a2﹣4a+4+=0,则c的取值范围是______.3、在ABC中,已知∠A=60°,∠B=80°,则∠C是_____°.4、如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=56°,∠2=29°,则∠A的度数为______度.5、如图,△ABC≌△DCB,∠DBC=36°,则∠AOB=_____.三、解答题(5小题,每小题10分,共计50分)1、如图所示,AB//CD,G为AB上方一点,E、F分别为AB、CD上两点,∠AEG=4∠GEB,∠CFG=2∠GFD,∠GEB和∠GFD的角平分线交于点H,求∠G+∠H的值.2、如图,已知:DE//BC,CD是∠ACB的平分线,∠B=80°,∠A=50°,求:∠EDC与∠BDC的度数.3、如图,在△ABC中,∠BAC=90°,AB=AC,射线AE交BC于点P,∠BAE=15°;过点C作CD⊥AE于点D,连接BE,过点E作EF∥BC交DC的延长线于点F.(1)求∠F的度数;(2)若∠ABE=75°,求证:BE∥CF.4、已知直线AB∥CD,EF是截线,点M在直线AB、CD之间.(1)如图1,连接GM,HM.求证:;(2)如图2,在的角平分线上取两点M、Q,使得.请直接写出与之间的数量关系;(3)如图3,若射线GH平分,点N在MH的延长线上,连接GN,若,,求的度数.5、如图,BD是的角平分线,BE是的AC边上的中线.(1)若的周长为13,,,求AB的长.(2)若,,求的度数. -参考答案-一、单选题1、B【解析】【分析】根据三角形的外角的性质计算即可.【详解】解:由三角形的外角的性质可知,∠ACD=∠A+∠B=100°,故选:B.【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解答本题的关键.三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角.2、B【解析】【分析】根据三角形的中线的定义判断即可.【详解】解:∵AD、BE、CF是△ABC的三条中线,∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,故A、C、D都不一定正确;B正确.故选:B.【点睛】本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.3、B【解析】【分析】根据三角形外角的性质:三角形一个外角的度数等于与其不相邻的两个内角的度数和进行求解即可.【详解】解:由题意得: ∴,∴,故选B.【点睛】本题主要考查了三角形外角的性质,解一元一次方程,熟知三角形外角的性质是解题的关键.4、B【解析】【分析】已知,得到,根据外角性质,得到,,再将两式相加,等量代换,即可得解;【详解】解:如图所示,∵,∴,∵,,∴,∵,,∴,∵,,∴;故选D.【点睛】本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.5、B【解析】【分析】由BC∥ED,得到∠2=∠CBD,由三角形外角的性质得到∠CBD=∠1+∠A=130°,由此即可得到答案.【详解】解:如图所示,由题意得:∠A=90°,BC∥EF,∴∠2=∠CBD,又∵∠CBD=∠1+∠A=130°,∴∠2=130°,故选B.【点睛】本题主要考查了三角形外角的性质,平行线的性质,熟知相关知识是解题的关键.6、A【解析】【分析】由平行线的性质,得,然后由三角形外角的性质,即可求出答案.【详解】解:由题意,如图,∵,∴,∵,∴;故选:A【点睛】本题考查了三角形的外角性质,平行线的性质,解题的关键是掌握所学的知识,正确求出.7、B【解析】【分析】根据两直线相交对顶角相等、三角形角的外角性质即可确定答案.【详解】解:选项A、∵∠1与∠2互为对顶角,∴∠1=∠2,故选项A不符合题意;选项B、∵∠1=∠B+∠C,∴∠1>∠B,故选项B符合题意;选项C、∵∠2=∠D+∠A,∴∠2>∠D,故选项C不符合题意;选项D、∵,,∴,故选项D不符合题意;故选:B.【点睛】本题主要考查了对顶角的性质、平行线的性质和三角形内角和、外角的性质,能熟记对顶角的性质是解此题的关键.8、B【解析】【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最大内角即可.【详解】解:由题意得:α=2β,α=60°,则β=30°,180°-60°-30°=90°,故选B.【点睛】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.9、C【解析】【分析】根据三角形中线、角平分线的定义逐项判断即可求解.【详解】解:A、∵AE=DE,∴BE是△ABD的中线,故本选项不符合题意;B、∵BD平分∠EBC,∴BD是△BCE的角平分线,故本选项不符合题意;C、∵BD平分∠EBC,∴∠2=∠3,但不能推出∠2、∠3和∠1相等,故本选项符合题意;D、∵S△AEB=×AE×BC,S△EDB=×DE×BC,AE=DE,∴S△AEB=S△EDB,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形中线、角平分线的定义,熟练掌握三角形中,连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.10、D【解析】【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;三角形的内角可以小于60°,一个三角形的三个角可以为: 故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.二、填空题1、180度##【解析】【分析】如图,连接 记的交点为 先证明再利用三角形的内角和定理可得答案.【详解】解:如图,连接 记的交点为 故答案为:【点睛】本题考查的是三角形的内角和定理,作出合适的辅助线构建三角形是解本题的关键.2、2<c<6【解析】【分析】根据非负数的性质得到,,再根据三角形三边的关系得.【详解】解:,∴,,,所以,故答案为:【点睛】本题主要考查了三角形的三边关系,以及非负数的性质,解题的关键是求出,的值,熟练掌握三角形的三边关系.3、40【解析】【分析】根据三角形内角和定理计算即可.【详解】解:∵∠A=60°,∠B=80°,∴∠C=180°﹣60°﹣80°=40°,故答案为:40.【点睛】本题考查三角形内角和定理,三角形内角和是180°.4、27【解析】【分析】如图,∠3=∠1,由∠3=∠2+∠A计算求解即可.【详解】解:如图∵a∥b,∠1=56°∴∠3=∠1=56°∵∠3=∠2+∠A,∠2=29°∴∠A=∠3﹣∠2=56°﹣29°=27°故答案为:27.【点睛】本题考查了平行线性质中的同位角,三角形的外角等知识.解题的关键在于正确的表示角的数量关系.5、72°##72度【解析】【分析】由全等三角形的对应角相等和三角形外角定理求解.【详解】解:如图△ABC≌△DCB,∠DBC=36°,∠ACB=∠DBC=36°,∠AOB=∠ACB+∠DBC=36°+36°=72°故答案为:72°.【点睛】本题考查全等三角形对应角相等、三角形的一个外角等于与它不相邻的两个内角和,掌握相关知识是解题关键.三、解答题1、∠G+∠H=36°.【解析】【分析】先设,,由题意可得,,由,,从而求出;根据题意得, , 从而得到的值.【详解】解:设,,由题意可得,,, 由,,解得,;由靴子图AEGFC知,,即由靴子图AEHFC知,,即即,,【点睛】本题考查平行线的性质,解题的关键是设,,由题意得到的关系式,正确将表示成的形式.2、∠BDC=75°,∠EDC =25°【解析】【分析】先根据三角形内角和定理求出∠ACB =50°,再由角平分线的定义求出,则由三角形内角和定理可求出∠BDC=180°-∠B-∠BCD=75°,再由平行线的性质即可得到∠EDC=∠BCD=25°.【详解】解:∵∠A=50°,∠B=80°,∴∠ACB=180°-∠A-∠B=50°,∵CD平分∠ACB,∴,∴∠BDC=180°-∠B-∠BCD=75°,∵DE∥BC,∴∠EDC=∠BCD=25°.【点睛】本题主要考查了三角形内角和定理,角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.3、(1);(2)证明见详解..【解析】【分析】(1)根据三角形内角和及等腰三角形的性质可得,,由各角之间的关系及三角形内角和定理可得,,最后由平行线的性质即可得出;(2)由题意及各角之间的关系可得,得出,利用平行线的判定定理即可证明.【详解】解:(1)∵,,,∴,,∵,∴,,∴,∴,∵,∴,,∴;(2)∵,,∴,由(1)可得,∴,∴(内错角相等,两直线平行).【点睛】题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.4、 (1)见解析(2)∠GQH+∠GMH=180°,理由见解析(3)60°【解析】【分析】(1)过点M作MI∥AB交EF于点I,可得∠AGM=∠GMI,再由AB∥CD,可得MI∥CD,从而得到∠CHM=∠HMI,即可求证;(2)过点M作MP∥AB交EF于点P,同(1)可得到∠PMH=∠CHM,∠GMP=∠AGM,再由MH平分∠GHC,可得∠PHM=∠CHM,从而得到∠PHM=∠PMH,再由,可得∠HGQ=∠GMP,从而得到∠GMH=∠HGQ+∠PHM,然后根据三角形的内角和定理,即可求解;(3)过点M作MK∥AB交EF于点K,设 ,可得 ,同(1),可得∠GMH=∠GMK+HMK= ,再由,可得,然后根据三角形的内角和定理,可得 ,再由AB∥CD,可得∠AGH+∠CHG=180°,即可求解.(1)证明:如图,过点M作MI∥AB交EF于点I,∵MI∥AB,∴∠AGM=∠GMI,∵AB∥CD,∴MI∥CD,∴∠CHM=∠HMI,∴∠GMH=∠HMI +∠GMI= ∠AGM +∠CHM;(2)解:∠GQH+∠GMH=180°,理由如下:如图,过点M作MP∥AB交EF于点P,∵MP∥AB,∴∠GMP=∠AGM,∵AB∥CD,∴MP∥CD,∴∠PMH=∠CHM,∵MH平分∠GHC,∴∠PHM=∠CHM,∴∠PHM=∠PMH,∵,∴∠HGQ=∠GMP,∵∠GMH=∠GMP+∠PMH,∴∠GMH=∠HGQ+∠PHM,∵∠GQH+∠HGQ+∠PHM=180°,∴∠GQH+∠GMH=180°(3)解:如图,过点M作MK∥AB交EF于点K,设 ,∵GH平分∠BGM,∴ ,∵MK∥AB,∴ ,∵AB∥CD,∴MK∥CD,∴∠HMK=∠CHM,∴∠GMH=∠GMK+HMK= ,∵,∴,即,∵∠GMH+∠N+∠MGN=180°,∴ ,解得: ,∵AB∥CD, ∴∠AGH+∠CHG=180°,即 ,∴ ,∴∠MHG=60°.【点睛】本题主要考查了平行的判定和性质,三角形的内角和定理,角平分线的定义,做适当辅助线,构造平行线,并熟练掌握平行的判定和性质定理,三角形的内角和定理,角平分线的定义是解题的关键.5、(1)3;(2).【解析】【分析】(1)首先根据中线的性质得到,然后根据的周长为13,即可求出AB的长;(2)首先根据BD是的角平分线得到,然后根据三角形内角和定理即可求出的度数.【详解】(1)∵BE是的AC边上的中线,∴,又∵的周长为13,∴;(2)∵BD是的角平分线,∴,又∵,∴.【点睛】此题考查三角形中线和角平分线的概念,三角形内角和定理的运用,解题的关键是熟练掌握三角形中线和角平分线的概念,三角形内角和定理.
相关试卷
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试达标测试,共21页。试卷主要包含了如图,,,,则的度数是,如图,在中,AD等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试复习练习题,共23页。
这是一份数学第九章 三角形综合与测试练习题,共28页。试卷主要包含了定理,如图,,,则的度数是等内容,欢迎下载使用。