冀教版七年级下册第九章 三角形综合与测试随堂练习题
展开冀教版七年级数学下册第九章 三角形同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知△ABC中,BD、CE分别是△ABC的角平分线,BD与CE交于点O,如果设∠BAC=n°(0<n<180),那么∠BOE的度数是( )
A.90°n° B.90°n° C.45°+n° D.180°﹣n°
2、下列长度的三条线段能组成三角形的是( )
A.3,4,8 B.5,6,11 C.5,6,10 D.4,5,9
3、如图,把△ABC绕顶点C按顺时针方向旋转得到△A′B′C′,当A′B′⊥AC,∠A=50°,∠A′CB=115°时,∠B′CA的度数为( )
A.30° B.35° C.40° D.45°
4、如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=32°,∠B=30°,则∠ACE的大小是( )
A.63° B.58° C.54° D.56°
5、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?( )
A.0根 B.1根 C.2根 D.3根
6、如图,点D、E分别在∠ABC的边BA、BC上,DE⊥AB,过BA上的点F(位于点D上方)作FG∥BC,若∠AFG=42°,则∠DEB的度数为( )
A.42° B.48° C.52° D.58°
7、在△ABC中,∠A=∠B=∠C,则∠C=( )
A.70° B.80° C.100° D.120°
8、如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是( )
A.BE是△ABD的中线 B.BD是△BCE的角平分线
C.∠1=∠2=∠3 D.S△AEB=S△EDB
9、如图,在中,AD、AE分别是边BC上的中线与高,,CD的长为5,则的面积为( )
A.8 B.10 C.20 D.40
10、如图,已知为的外角,,,那么的度数是( )
A.30° B.40° C.50° D.60°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在△ABC中,点D在CB的延长线上,∠A=60°,∠ABD=110°,则∠C等于___.
2、如图,A,E,F共线,ABCD,∠A=130°,∠C=125°,则∠CEF等于_______度.
3、如图,在三角形ABC中,,点D为射线CB上一点,过点D作交直线AB于点E,交直线AC于点F,CG平分交DF于点G.若,则______°.
4、如图,在△中,已知点分别为的中点,若△的面积为,则阴影部分的面积为 _________
5、如图,△ABC≌△DCB,∠DBC=36°,则∠AOB=_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知△ABC的高AD和角平分线AE,∠B=26°,∠ACD=56°,求
(1)∠CAD的度数;
(2)∠AED的度数.
2、如图,在直角三角形ABC中,∠BAC=90°,AD是BC边上的高,CE是AB边上的中线,AB=12cm,BC=20cm,AC=16cm,求:
(1)AD的长;
(2)△BCE的面积.
3、如图,中,BE为AC边上的高,CD平分,CD、BE相交于点F.若,,求的度数.
4、如图,中,是角平分线,且,,求的度数.
5、若AE是边BC上的高,AD是的平分线且交BC于点D.若,,分别求和的度数.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据BD、CE分别是△ABC的角平分线和三角形的外角,得到,再利用三角形的内角和,得到,代入数据即可求解.
【详解】
解:∵BD、CE分别是△ABC的角平分线,
∴,,
∴
,
∵,
∴.
故答案选:A.
【点睛】
本题考查三角形的内角和定理和外角的性质.涉及角平分线的性质.三角形的内角和定理:三角形的内角和等于.三角形的一个外角等于与它不相邻的两个内角之和.
2、C
【解析】
【分析】
根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
【详解】
解:根据三角形的三边关系,得,
A、3+4=7<8,不能组成三角形,该选项不符合题意;
B、5+6=11,不能够组成三角形,该选项不符合题意;
C、5+6=11>10,能够组成三角形,该选项符合题意;
D、4+5=9,不能够组成三角形,该选项不符合题意.
故选:C.
【点睛】
本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.
3、B
【解析】
【分析】
由旋转的性质可得∠A′=∠A=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠A′CA=40°,即可求解.
【详解】
解:根据旋转的性质可知∠A′=∠A=50°,∠BCB'=∠ACA',
∴∠A′CA=90°﹣50°=40°,
∴∠BCB′=∠A′CA=40°,
∴∠B′CA=∠A′CB﹣∠A′CA﹣∠BCB′=115°﹣40°﹣40°=35°.
故选:B.
【点睛】
本题主要考查了旋转的性质,三角形内角和定理的应用,解决这类问题要找准旋转角、以及旋转后对应的线段和角.
4、C
【解析】
【分析】
先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.
【详解】
解:∵∠A=33°,∠B=30°,
∴∠ACD=∠A+∠B=33°+30°=63°,
∵△ABC绕点C按逆时针方向旋转至△DEC,
∴△ABC≌△DEC,
∴∠ACB=∠DCE,
∴∠BCE=∠ACD,
∴∠BCE=63°,
∴∠ACE=180°-∠ACD-∠BCE=180°-63°-63°=54°.
故选:C.
【点睛】
本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.
5、B
【解析】
【分析】
根据三角形的稳定性即可得.
【详解】
解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:
或
故选:B.
【点睛】
本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.
6、B
【解析】
【分析】
根据两直线平行,同位角相等可得,再由垂直的性质及三角形内角和定理即可得.
【详解】
解:∵,
∴,
∵,
∴,
∴,
故选:B.
【点睛】
题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.
7、D
【解析】
【分析】
根据三角形的内角和,①,进而根据已知条件,将代入①即可求得
【详解】
解:∵在△ABC中,,∠A=∠B=∠C,
∴
解得
故选D
【点睛】
本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
8、C
【解析】
【分析】
根据三角形中线、角平分线的定义逐项判断即可求解.
【详解】
解:A、∵AE=DE,
∴BE是△ABD的中线,故本选项不符合题意;
B、∵BD平分∠EBC,
∴BD是△BCE的角平分线,故本选项不符合题意;
C、∵BD平分∠EBC,
∴∠2=∠3,
但不能推出∠2、∠3和∠1相等,故本选项符合题意;
D、∵S△AEB=×AE×BC,S△EDB=×DE×BC,AE=DE,
∴S△AEB=S△EDB,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形中线、角平分线的定义,熟练掌握三角形中,连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.
9、C
【解析】
【分析】
根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.
【详解】
解:∵AD是边BC上的中线,CD的长为5,
∴CB=2CD=10,
的面积为,
故选:C.
【点睛】
本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.
10、B
【解析】
【分析】
根据三角形的外角性质解答即可.
【详解】
解:∵∠ACD=60°,∠B=20°,
∴∠A=∠ACD−∠B=60°−20°=40°,
故选:B.
【点睛】
此题考查三角形的外角性质,关键是根据三角形外角性质解答.
二、填空题
1、50°
【解析】
【分析】
首先根据平角的概念求出的度数,然后根据三角形内角和定理即可求出的度数.
【详解】
解:∵∠ABD=110°,
∴,
∴
故答案为:50°.
【点睛】
此题考查了平角的概念,三角形三角形内角和定理,解题的关键是熟练掌握平角的概念,三角形三角形内角和定理.
2、75
【解析】
【分析】
根据平行线的性质求出∠BDC,求出∠FDE,根据三角形内角和定理求出即可.
【详解】
解:连接AC,如图:
∵AB∥CD,
∴∠BAC+∠DCA=180°,
∵∠BAF=130°,∠DCE=125°,
∴(∠CAF+∠ACE)+(∠BAC+∠DCA)=130°+125°=255°,
∴∠CAF+∠ACE=255°-(∠BAC+∠DCA)=255°+180°=75°,
∵∠CEF是△ACE外角,
∴∠CEF=∠CAF+∠ACE=75°.
故答案为:75.
【点睛】
本题主要考查了平行线的性质.解题的关键是掌握平行线的性质:两直线平行,同旁内角互补.
3、80
【解析】
【分析】
先求解 再求解 再利用三角形的外角的性质可得答案.
【详解】
解: ,,
,
,
CG平分,
故答案为:
【点睛】
本题考查的是角平分线的定义,平行线的性质,三角形的内角和定理,三角形的外角的性质,熟练的运用平行线的性质探究角之间的关系是解本题的关键.
4、1
【解析】
【分析】
根据三角形的中线把三角形分成两个面积相等的三角形解答.
【详解】
解:∵点E是AD的中点,
∴S△ABE=S△ABD,S△ACE=S△ADC,
∴S△ABE+S△ACE=S△ABC=×4=2cm2,
∴S△BCE=S△ABC=×4=2cm2,
∵点F是CE的中点,
∴S△BEF=S△BCE=×2=1cm2.
故答案为:1.
【点睛】
本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.
5、72°##72度
【解析】
【分析】
由全等三角形的对应角相等和三角形外角定理求解.
【详解】
解:如图
△ABC≌△DCB,∠DBC=36°,
∠ACB=∠DBC=36°,
∠AOB=∠ACB+∠DBC=36°+36°=72°
故答案为:72°.
【点睛】
本题考查全等三角形对应角相等、三角形的一个外角等于与它不相邻的两个内角和,掌握相关知识是解题关键.
三、解答题
1、 (1)34°
(2)41°
【解析】
【分析】
(1)根据三角形内角和可得的度数;
(2)先根据三角形外角性质计算出,再根据角平分线定义得到,接着再利用三角形外角性质得到.
(1)
解:在中,,,
;
(2)
解:在中,,
,
平分,
,
.
【点睛】
本题考查角形内角和定理,解题的关键是掌握三角形内角和是,合理使用三角形外角性质计算角度.
2、(1);(2)48.
【解析】
【分析】
(1)利用面积法得到AD•BC=AB•AC,然后把AB=12cm,BC=20cm,AC=16cm代入可求出AD的长;
(2)由于三角形的中线将三角形分成面积相等的两部分,所以S△BCE=S△ABC.
【详解】
解:(1)∵∠BAC=90°,AD是BC边上的高,
∴AD•BC=AB•AC,
∴AD==(cm);
(2)∵CE是AB边上的中线,
∴S△BCE=S△ABC=××12×16=48(cm2).
【点睛】
本题考查三角形中线的性质,涉及等积法,是重要考点,掌握相关知识是解题关键.
3、.
【解析】
【分析】
先根据三角形的内角和定理可得,再根据角平分线的定义可得,然后根据垂直的定义可得,最后根据三角形的外角性质即可得.
【详解】
解:在中,,,
,
平分,
,
为边上的高,
,
.
【点睛】
本题考查了三角形的内角和定理、角平分线的定义、三角形的外角性质等知识点,熟练掌握三角形的内角和定理是解题关键.
4、25°
【解析】
【分析】
根据三角形内角和求出∠CAB,再根据角平分线的性质求出∠BAE即可.
【详解】
解:∵∠B=52°,∠C=78°,
∴∠BAC=180°-52°-78°=50°,
∵AE平分∠BAC,
∴∠BAE=∠BAC=×50°=25°.
【点睛】
本题考查了角的平分线的性质、三角形的内角和定理,熟记三角形内角和为180°是解本题的关键.
5、;
【解析】
【分析】
根据△AEC的内角和定理可得:,根据角平分线的性质可得,根据△ABC的内角和定理可得∠BAC,又因为,,即可得解.
【详解】
解:∵AE是边BC上的高
∴
∴在中,有
又∵
∴
∵AD是的平分线
∴
∵在中,有
已知,
∴
∴
∴
【点睛】
本题考查了三角形内角和定理及角平分线的性质,熟悉这些知识点,灵活应用等量代换是解决本题的关键.
数学七年级下册第九章 三角形综合与测试当堂检测题: 这是一份数学七年级下册第九章 三角形综合与测试当堂检测题,共22页。试卷主要包含了若一个三角形的三个外角之比为3,三角形的外角和是等内容,欢迎下载使用。
初中数学冀教版七年级下册第九章 三角形综合与测试同步训练题: 这是一份初中数学冀教版七年级下册第九章 三角形综合与测试同步训练题,共18页。试卷主要包含了三角形的外角和是,如图,在ABC中,点D,如图,直线l1等内容,欢迎下载使用。
冀教版七年级下册第九章 三角形综合与测试课后复习题: 这是一份冀教版七年级下册第九章 三角形综合与测试课后复习题,共19页。试卷主要包含了如图,,,,则的度数是等内容,欢迎下载使用。