【真题汇编】2022年北京市海淀区中考数学五年真题汇总 卷(Ⅲ)(含答案详解)
展开
这是一份【真题汇编】2022年北京市海淀区中考数学五年真题汇总 卷(Ⅲ)(含答案详解),共24页。
2022年北京市海淀区中考数学五年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若实数m使关于x的不等式组有解且至多有3个整数解,且使关于y的分式方程1的解满足﹣3≤y≤4,则满足条件的所有整数m的和为( )A.17 B.20 C.22 D.252、神舟号载人飞船于2021年10月16日凌晨成功对接中国空间站,自升空以来神舟十三号飞船每天绕地球16圈,按地球赤道周长计算神舟十三号飞船每天飞行约641200千米,641200用科学记数法表示为( )A. B. C. D.3、已知线段AB、CD,AB<CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是( )A.点B在线段CD上(C、D之间)B.点B与点D重合C.点B在线段CD的延长线上D.点B在线段DC的延长线上4、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:x…﹣2﹣1012…y1…12345…x…﹣2﹣1012…y2…52﹣1﹣4﹣7…则关于x的不等式kx+b>mx+n的解集是( )A.x>0 B.x<0 C.x<﹣1 D.x>﹣15、下列方程中,关于x的一元二次方程的是( )A.x2-1=2x B.x3+2x2=0 C. D.x2-y+1=06、如图,过圆心且互相垂直的两条直线将两个同心圆分成了若干部分,在该图形区域内任取一点,则该点取自阴影部分的概率是( )A. B. C. D.7、若关于x的不等式组有且仅有3个整数解,且关于y的方程的解为负整数,则符合条件的整数a的个数为( )A.1个 B.2个 C.3个 D.4个8、若关于x的不等式组无解,则m的取值范围是( )A. B. C. D.9、若(mx+8)(2﹣3x)中不含x的一次项,则m的值为( )A.0 B.3 C.12 D.1610、质检部门从同一批次1000件产品中随机抽取100件进行检测,检测出次品3件,由此估计这一批次产品中次品件数是( )A.60 B.30 C.600 D.300第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、2.25的倒数是__________.2、如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,将△ADE沿直线DE翻折后与△FDE重合,DF、EF分别与边BC交于点M、N,如果DE=8,,那么MN的长是_____.3、近似数精确到____________位.4、如图,B、C、D在同一直线上,,,,则的面积为_______.5、一组数据3,-4,1,x的极差为8,则x的值是______.三、解答题(5小题,每小题10分,共计50分)1、计算:.2、平面上有三个点A,B,O.点A在点O的北偏东方向上,,点B在点O的南偏东30°方向上,,连接AB,点C为线段AB的中点,连接OC.(1)依题意补全图形(借助量角器、刻度尺画图);(2)写出的依据:(3)比较线段OC与AC的长短并说明理由:(4)直接写出∠AOB的度数.3、在整式的加减练习中,已知,小王同学错将“”看成“”算得错误结果为,请你解决以下问题:(1)求出整式;(2)求出正确计算结果.4、如图①,,AD与BC相交于点M,点H在BD上.求证:.小明的部分证明如下:证明:∵,∴,∴同理可得:______,……(1)请完成以上的证明(可用其他方法替换小明的方法);(2)求证:;(3)如图②,正方形DEFG的顶点D、G分别在的边AB、AC上,E、F在边BC上,,交DG于M,垂足为N,求证:.5、如图,在Rt△ABC中,∠ACB=90°,AC=12,BC=5,点D是边AC上的动点,以CD为边在△ABC外作正方形CDEF,分别联结AE、BE,BE与AC交于点G(1)当AE⊥BE时,求正方形CDEF的面积;(2)延长ED交AB于点H,如果△BEH和△ABG相似,求sin∠ABE的值;(3)当AG=AE时,求CD的长. -参考答案-一、单选题1、B【分析】根据不等式组求出m的范围,然后再根据分式方程求出m的范围,从而确定的m的可能值.【详解】解:由不等式组可知:x≤5且x≥,∵有解且至多有3个整数解,∴2<≤5,∴2<m≤8,由分式方程可知:y=m-3,将y=m-3代入y-2≠0,∴m≠5,∵-3≤y≤4,∴-3≤m-3≤4,∵m是整数,∴0≤m≤7,综上,2<m≤7,∴所有满足条件的整数m有:3、4、6、7,共4个,和为:3+4+6+7=20.故选:B.【点睛】本题考查了学生的计算能力以及推理能,解题的关键是根据不等式组以及分式方程求出m的范围,本题属于中等题型.2、B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:641200用科学记数法表示为:641200=,故选择B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、A【分析】根据叠合法比较大小的方法始点重合,看终点可得点B在线段CD上,可判断A,点B与点D重合,可得线段AB=CD,可判断B,利用AB>CD,点B在线段CD的延长线上,可判断C, 点B在线段DC的延长线上,没有将AB移动到CD的位置,无法比较大小可判断D.【详解】解:将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,点B在线段CD上(C、D之间),故选项A正确,点B与点D重合,则有AB=CD与AB<CD不符合,故选项B不正确;点B在线段CD的延长线上,则有AB>CD,与AB<CD不符合,故选项C不正确;点B在线段DC的延长线上,没有将AB移动到CD的位置,故选项D不正确.故选:A.【点睛】本题考查线段的比较大小的方法,掌握叠合法比较线段大小的方法与步骤是解题关键.4、D【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表可得y1=kx+b中y随x的增大而增大;y2=mx+n中y随x的增大而减小,且两个函数的交点坐标是(﹣1,2).则当x>﹣1时,kx+b>mx+n.故选:D.【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.5、A【分析】只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.【详解】解:A、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意;B、未知数最高次数是3,不是关于x的一元二次方程,不符合题意;C、为分式方程,不符合题意;D、含有两个未知数,不是一元二次方程,不符合题意故选:A.【点睛】本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为0.6、D【分析】旋转阴影部分后,阴影部分是一个半圆,根据概率公式可求解【详解】解:旋转阴影部分,如图,∴该点取自阴影部分的概率是故选:D【点睛】本题主要考查概率公式,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.7、C【分析】解不等式组得到,利用不等式组有且仅有3个整数解得到,再解分式方程得到,根据解为负整数,得到a的取值,再取共同部分即可.【详解】解:解不等式组得:,∵不等式组有且仅有3个整数解,∴,解得:,解方程得:,∵方程的解为负整数,∴,∴,∴a的值为:-13、-11、-9、-7、-5、-3,…,∴符合条件的整数a为:-13,-11,-9,共3个,故选C.【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.8、D【分析】解两个不等式,再根据“大大小小找不着”可得m的取值范围.【详解】解:解不等式得:,解不等式得:,∵不等式组无解,∴,解得:,故选:D.【点睛】此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则是解题关键.9、C【分析】先计算多项式乘以多项式得到结果为,结合不含的一次项列方程,从而可得答案.【详解】解:(mx+8)(2﹣3x) (mx+8)(2﹣3x)中不含x的一次项, 解得: 故选C【点睛】本题考查的是多项式乘法中不含某项,掌握“多项式乘法中不含某项即某项的系数为0”是解题的关键.10、B【分析】根据样本的百分比为,用1000乘以3%即可求得答案.【详解】解:∵随机抽取100件进行检测,检测出次品3件,∴估计1000件产品中次品件数是故选B【点睛】本题考查了根据样本求总体,掌握利用样本估计总体是解题的关键.二、填空题1、【分析】2.25的倒数为,计算求解即可.【详解】解:由题意知,2.25的倒数为故答案为:.【点睛】本题考查了倒数.解题的关键在于理解倒数的定义.2、4【分析】先根据折叠的性质得DA=DF,∠ADE=∠FDE,再根据平行线的性质和等量代换得到∠B=∠BMD,则DB=DM,接着利用比例的性质得到FM=DM,然后证明△FMN∽△FDE,从而利用相似比可计算出MN的长.【详解】解:∵△ADE沿直线DE翻折后与△FDE重合,∴DA=DF,∠ADE=∠FDE,∵DE∥BC,∴∠ADE=∠B,∠FDE=∠BMD,∴∠B=∠BMD,∴DB=DM,∵= ,∴=2,∴=2,∴FM=DM,∵MN∥DE,∴△FMN∽△FDE,∴== ,∴MN=DE=×8=4.故答案为:4【点睛】本题主要考查了相似三角形的判定和性质,平行线分线段成比例,图形的折叠,熟练掌握相似三角形的判定和性质,平行线分线段成比例,图形的折叠性质是解题的关键.3、百【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.【详解】解:∵104是1万,6位万位,0为千位,5为百位,∴近似数6.05×104精确到百位;故答案为百.【点睛】此题考查近似数与有效数字,解题关键在于掌握从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.4、20【分析】根据题意由“SAS”可证△ABC≌△CDE,得AC=CE,∠ACB=∠CED,再证∠ACE=90°,然后由勾股定理可求AC的长,进而利用三角形面积公式即可求解.【详解】解:在△ABC和△CDE中,,∴△ABC≌△CDE(SAS),∴AC=CE,∠ACB=∠CED,∵∠CED+∠ECD=90°,∴∠ACB+∠ECD=90°,∴∠ACE=90°,∵∠B=90°,AB=2,BC=6,∴,∴CE=,∴S△ACE=AC×CE=××=20,故答案为:20.【点睛】本题考查全等三角形的判定和性质,勾股定理,等腰直角三角形的性质等知识,证明△ABC≌△CDE是解题的关键.5、4或-5【分析】根据极差的定义分两种情况讨论,当x最大时和x最小时,分别列出算式进行计算即可.【详解】解:∵数据3,-4,1,x的极差是8,∴当x最大时:x-(-4)=8,解得:x=4;当x最小时,3-x=8,x=-5,故答案为:4或-5.【点睛】此题主要考查了极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,分两种情况讨论是解决本题的关键.三、解答题1、【分析】根据二次根式的乘法,以及二次根式的性质,分母有理化进行计算即可.【详解】解:【点睛】本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.2、(1)见解析;(2)三角形的两边之和大于第三边;(3) ,理由见解析;(4)70°【分析】(1)根据题意画出图形,即可求解;(2)根据三角形的两边之和大于第三边,即可求解;(3)利用刻度尺测量得: ,即可求解;(4)用180°减去80°,再减去30°,即可求解.【详解】解:(1)根据题意画出图形,如图所示:(2)在△AOB中,因为三角形的两边之和大于第三边,所以;(3) ,理由如下:利用刻度尺测量得: ,AC=2cm,∴;(4)根据题意得: .【点睛】本题主要考查了方位角,三角形的三边关系及其应用,中点的定义,明确题意,准确画出图形是解题的关键.3、(1)(2)【分析】(1)根据结果减去,进而根据整式的加减运算化简即可求得整式;(2)按要求计算,根据去括号,合并同类项进行计算化简即可.(1)解:∵,∴(2)解:∵,∴【点睛】本题考查了整式的加减运算,正确的去括号是解题的关键.4、(1)见解析(2)见解析(3)见解析【分析】(1)根据题意证明,,进而根据相似三角形对应边成比例,列出比例式,进而根据分式的性质化简即可得证;(2)分别过点分别作垂直于,垂足分别为,根据(1)证明高的比的关系,进即可证明(3)根据正方形的性质可得,进而可得,由,根据分式的性质即可证明.(1)证明:∵,∴,∴,(2)如图,分别过点分别作垂直于,垂足分别为,∵,∴,∴,(3)四边形是正方形,,【点睛】本题考查了相似三角形的性质与判定,分式的性质,掌握相似三角形的性质与判定是解题的关键.5、(1)(2)(3)【分析】(1)证明△ADE≌△BFE(ASA),推出AD=BF,构建方程求出CD即可.(2)过点A作AM⊥BE于M,想办法求出AB,AM即可解决问题.(3)如图3中,延长CA到N,使得AN=AG.设CD=DE=EF=CF=x,则AD=12﹣x,DN=BF=5+x,在Rt△ADE中,利用勾股定理求出x即可解决问题.(1)如图1中,∵四边形ABCD是正方形,∴CD=DE=EF=CF,∠CDE=∠DEF=∠F=90°,∵AE⊥BE,∴∠AEB=∠DEF=90°,∴∠AED=∠BEF,∵∠ADE=∠F=90°,DE=FE,∴△ADE≌△BFE(ASA),∴AD=BF,∴AD=5+CF=5+CD,∵AC=CD+AD=12,∴CD+5+CD=12,∴CD=,∴正方形CDEF的面积为.(2)如图2中,∵∠ABG=∠EBH,∴当∠BAG=∠BEH=∠CBG时,△ABG∽△EBH,∵∠BCG=∠ACB,∠CBG=∠BAG,∴△CBG∽△CAB,∴=CG•CA,∴CG=,∴BG===,∴AG=AC﹣CG=,过点A作AM⊥BE于M,∵∠BCG=∠AMG=90°,∠CGB=∠AGM,∴∠GAM=∠CBG,∴cos∠GAM=cos∠CBG=,∴AM=,∵AB==13,∴sin∠ABM=.(3)如图3中,延长CA到N,使得AN=AG.∵AE=AG=AN,∴∠GEN=90°,由(1)可知,△NDE≌△BFR,∴ND=BF,设CD=DE=EF=CF=x,则AD=12﹣x,DN=BF=5+x,∴AN=AE=5+x﹣(12﹣x)=2x﹣7,在Rt△ADE中,∵,∴,∴x=或(舍弃),∴CD=.【点睛】本题考查了正方形的性质,勾股定理,三角形的全等,三角形相似的性质和判定,一元二次方程的解法,三角函数的正弦值,熟练掌握勾股定理,准确解一元二次方程,正弦值是解题的关键.
相关试卷
这是一份【真题汇编】2022年北京市通州区中考数学三年高频真题汇总卷(含答案及详解),共28页。试卷主要包含了二次函数y=,若,,且a,b同号,则的值为,下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份【真题汇编】2022年北京市中考数学真题汇总 卷(Ⅱ)(含答案及解析),共22页。试卷主要包含了定义一种新运算,下列计算正确的是,一组样本数据为1等内容,欢迎下载使用。
这是一份【真题汇编】2022年北京市海淀区中考数学真题汇总 卷(Ⅱ)(精选),共23页。试卷主要包含了在数2,-2,,中,最小的数为,下列利用等式的性质,错误的是,下列二次根式的运算正确的是等内容,欢迎下载使用。