【真题汇编】2022年广东省广州市中考数学真题汇总 卷(Ⅱ)(含详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列计算正确的是( )
A.B.C.D.
2、到三角形三个顶点距离相等的点是( )
A.三边垂直平分线的交点B.三条高所在直线的交点
C.三条角平分线的交点D.三条中线的交点
3、用配方法解一元二次方程x2+3=4x,下列配方正确的是( )
A.(x+2)2=2B.(x-2)2=7C.(x+2)2=1D.(x-2)2=1
4、下列二次根式的运算正确的是( )
A.B.
C.D.
5、如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=( )
A.25°B.27°C.30°D.45°
6、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
7、任何一个正整数n都可以进行这样的分解:n=p×q(p、q是正整数.且p≤q),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:S(n)=,例如18可以分解成1×18,2×9或3×6,则S(18)==,例如35可以分解成1×35,5×7,则S(35)=,则S(128)的值是( )
A.B.C.D.
8、若关于x的一元二次方程ax2﹣4x+2=0有两个实数根,则a的取值范围是( )
A.a≤2B.a≤2且a≠0C.a<2D.a<2且a≠0
9、二次函数y=ax2+bx+c(a≠0)的图象如图所示,与x轴交于点(−1,0)和(x,0),且1
10、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
顶点的两个角是对顶角.其中说法正确的个数是( )
A.1B.2C.3D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,中,,,,将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是____________.
2、下列数轴上点表示的数是__________,点表示的数是__________.
3、近几年,就业形式严峻,考研人数持续增加,官方统计显示2022年考研报名人数为4570000人,创下了历史新高,将数据“4570000”用科学记数法表示为______.
4、多项式2a2b-abc的次数是______.
5、在同一平面上,外有一点P到圆上的最大距离是8cm,最小距离为2cm,则的半径为______cm.
三、解答题(5小题,每小题10分,共计50分)
1、解方程:.
2、在正方形网格中,每个小正方形的边长为1,△ABC在平面直角坐标系中的位置如图所示.
(1)画出△ABC沿x轴翻折后的△A1B1C1;
(2)以点M为位似中心,在网格中作出△A1B1C1的位似图形△A2B2C2,使其位似比为2:1;
(3)点A2的坐标______;△ABC与△A2B2C2的周长比是______.
3、在平面直角坐标系中,对于、两点,用以下方式定义两点间的“极大距离”;若,则;若,则.例如:如图,点,则.
(理解定义)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)若点、,则______.
(2)在点、、、中,到坐标原点的“极大距离”是2的点是______.(填写所有正确的字母代号)
(深入探索)
(3)已知点,,为坐标原点,求的值.
(拓展延伸)
(4)经过点的一次函数(、是常数,)的图像上是否存在点,使,为坐标原点,直接写出点的个数及对应的的取值范围.
4、在中,,,点E在射线CB上运动.连接AE,将线段AE绕点E顺时针旋转90°得到EF,连接CF.
(1)如图1,点E在点B的左侧运动.
①当,时,则___________°;
②猜想线段CA,CF与CE之间的数量关系为____________.
(2)如图2,点E在线段CB上运动时,第(1)问中线段CA,CF与CE之间的数量关系是否仍然成立?如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.
5、A市出租车收费标准如下:
(1)若甲、乙两地相距6千米,乘出租车从甲地到乙地需要付款多少元?
(2)某人从火车站乘出租车到旅馆,下车时计费表显示19.6元,请你帮忙算一算从火车站到旅馆的距离有多远?
(3)小明乘飞机来到A市,小刚从旅馆乘出租车到机场去接小明,到达机场时计费表显示73元,接完小明,立即沿原路返回旅馆(接人时间忽略不计),请帮小刚算一下乘原车返回和换乘另外的出租车,哪种更便宜?
-参考答案-
一、单选题
1、D
【分析】
直接根据合并同类项运算法则进行计算后再判断即可.
【详解】
解:A. ,选项A计算错误,不符合题意;
B. ,选项B计算错误,不符合题意;
C. ,选项C计算错误,不符合题意;
D. ,计算正确,符合题意
故选:D
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.
2、A
【分析】
根据线段垂直平分线上的点到两端点的距离相等解答.
【详解】
解:∵线段垂直平分线上的点到两端点的距离相等,
∴到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.
故选:A.
【点睛】
本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
3、D
【分析】
根据题意将方程常数项移到右边,未知项移到左边,然后两边都加上4,左边化为完全平方式,右边合并即可得到答案.
【详解】
,
整理得:,
配方得:,即.
故选:D.
【点睛】
本题考查用配方法解一元二次方程,掌握配方法的步骤是解题的关键.
4、B
【分析】
根据二次根式的性质及运算逐项进行判断即可.
【详解】
A、,故运算错误;
B、,故运算正确;
C、,故运算错误;
D、,故运算错误.
故选:B
【点睛】
本题考查了二次根式的性质、二次根式的运算,掌握二次根式的性质及运算法则是关键.
5、B
【分析】
根据BE⊥AC,AD=CD,得到AB=BC,∠ABC,证明△ABD≌△CED,求出∠E=∠ABE=27°.
【详解】
解:∵BE⊥AC,AD=CD,
∴BE是AC的垂直平分线,
∴AB=BC,
∴∠ABC=27°,
∵AD=CD,BD=ED,∠ADB=∠CDE,
∴△ABD≌△CED,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠E=∠ABE=27°,
故选:B.
【点睛】
此题考查了线段垂直平分线的性质,全等三角形的判定及性质,熟记线段垂直平分线的性质是解题的关键.
6、D
【分析】
由题意直接根据各象限内点坐标特征进行分析即可得出答案.
【详解】
∵点A(x,5)在第二象限,
∴x<0,
∴﹣x>0,
∴点B(﹣x,﹣5)在四象限.
故选:D.
【点睛】
本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
7、A
【分析】
由128=1×128=2×64=4×32=8×16结合最佳分解的定义即可知F(128)=.
【详解】
解:∵128=1×128=2×64=4×32=8×16,
∴F(128)=,
故选:A.
【点睛】
本题主要考查有理数的混合运算.理解题意掌握最佳分解的定义是解题的关键.
8、B
【分析】
根据方程有两个实数根,可得根的判别式的值不小于0,由此可得关于a的不等式,解不等式再结合一元二次方程的定义即可得答案
【详解】
解:根据题意得a≠0且Δ=(−4)2−4•a•2≥0,
解得a≤2且a≠0.
故选:B.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.
9、B
【分析】
由开口方向、对称轴的位置可判断结论①;由对称轴的位置可判断结论②;由x=-1函数值为0以及对称轴的位置可判断结论③;由增减性可判断结论④.
【详解】
解:由图象可知,a>0,b<0,∴ab<0,①正确;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
因与x轴交于点(−1,0)和(x,0),且1
由图象可知x=−1,y=a−b+c=0,又2a>−b,2a+a+c>−b+a+c,
∴3a+c>0,③正确;
由增减性可知m<−1,am2+bm+c>0,
当x=1时,a+b+c<0,即a+b
故选:B.
【点睛】
本题考查了二次函数图象与系数之间的关系,熟练掌握二次函数的开口方向,对称轴,函数增减性并会综合运用是解决本题的关键.
10、A
【分析】
根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.
【详解】
同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;
故选:A
【点睛】
本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.
二、填空题
1、
【分析】
如图(见解析),过点作轴于点,点作轴于点,设,从而可得,先利用勾股定理可得,从而可得,再根据旋转的性质可得,然后根据三角形全等的判定定理证出,最后根据全等三角形的性质可得,由此即可得出答案.
【详解】
解:如图,过点作轴于点,点作轴于点,
设,则,
在中,,
在中,,
,
解得,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
由旋转的性质得:,
,
,
,
在和中,,
,
,
,
故答案为:.
【点睛】
本题考查了勾股定理、旋转、点坐标等知识点,画出图形,通过作辅助线,正确找出两个全等三角形是解题关键.
2、 ##
【分析】
观察数轴上的数值,计算求解即可得到结果.
【详解】
解:由题意知A、B表示的数分别为:
故答案为:①;②.
【点睛】
本题考查了数轴上的点表示有理数.解题的关键在于正确的识别点的位置.
3、4.57×106
【分析】
将一个数表示成a×10n,1≤a<10,n是正整数的形式,叫做科学记数法,根据此定义即可得出答案.
【详解】
解:根据科学记数法的定义,4570000=4.57×106,
故答案为:4.57×106.
【点睛】
本题主要考查科学记数法的概念,关键是要牢记科学记数法的形式.
4、3
【分析】
利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,多项式中次数最高的项的次数叫做多项式的次数,据此求解即可.
【详解】
解:多项式2a2b-abc的次数是3.
故答案为:3.
【点睛】
本题主要考查了多项式,正确把握多项式的项数和次数确定方法是解题关键.
5、5或3
【分析】
分点P在圆内或圆外进行讨论.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:①当点P在圆内时,⊙O的直径长为8+2=10(cm),半径为5cm;
②当点P在圆外时,⊙O的直径长为8-2=6(cm),半径为3cm;
综上所述:⊙O的半径长为 5cm或3cm.
故答案为:5或3.
【点睛】
本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.
三、解答题
1、.
【分析】
先计算右边算式,再把系数化为1即可得答案.
【详解】
,
.
【点睛】
本题考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键.
2、
(1)见解析
(2)见解析
(3),
【分析】
(1)利用网格特点和旋转的性质画出A、B的对应点A1、B1即可;
(2)延长M A1到A2使MA2=2MA1,延长MB1到B2使MB2=2MB1,延长MC1到C2使MC2=2MC1,则可得到△A2B2C2,
(3)根据(2)可写出点A2的坐标;然后根据位似的性质可得△ABC与△A2B2C2的周长比
(1)
如图,△A1B1C1即为所作;
(2)
如图,△A2B2C2即为所作;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(3)
由(2)得,点的坐标,
由作图得,
∵与周长比为1:2
∴△ABC与△A2B2C2的周长比是1:2
故答案为:,1:2
【点睛】
本题考查了作图-位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.也考查了轴对称变换.
3、(1);(2);(3)或;(4)当或时,满足条件的点有1个,当时,满足条件的点有2个,当时,不存在满足条件的点,当时,满足条件的点有2个,当时,不存在满足条件的点.
【分析】
(1)根据新定义分别计算 再比较即可得到答案;
(2)根据新定义分别计算点、、、中,到坐标原点的“极大距离”,从而可得答案;
(3)由,先求解 结合 再列绝对值方程即可;
(4)先求解直线的解析式为: 再判断在正方形的边上,且 再结合函数图象进行分类讨论即可.
【详解】
解:(1) 点、,
而
(2) 点
同理可得:、、到原点的“极大距离”为:
故答案为:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(3),
而
解得:或
(4)如图,直线过
则
直线为:
,为坐标原点,
在正方形的边上,且
当直线过时,
则: 解得:
当直线过时,
则: 解得:
结合函数图象可得:当或时,满足条件的点有1个,
当时,满足条件的点有2个,
当时,不存在满足条件的点,
当时,满足条件的点有2个,
当时,不存在满足条件的点,
【点睛】
本题考查的是新定义情境下的一次函数的应用,坐标与图形,理解新定义,结合数形结合解题是解题的关键.
4、
(1)①;②
(2)不成立,
【分析】
(1)①由直角三角形的性质可得出答案;
②过点E作ME⊥EC交CA的延长线于M,由旋转的性质得出AE=EF,∠AEF=90°,得出∠AEM=∠CEF,证明△FEC≌△AEM(SAS),由全等三角形的性质得出CF=AM,由等腰直角三角形的性质可得出结论;
(2)过点F作FH⊥BC交BC的延长线于点H.证明△ABE≌△EHF(AAS),由全等三角形的性质得出FH=BE,EH=AB=BC,由等腰直角三角形的性质可得出结论;
(1)
①∵,,,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵sin∠EAB=
∴,
故答案为:30°;
②.
如图1,过点E作交CA的延长线于M,
∵,,
∴,∴,
∴,
∴,
∵将线段AE绕点E顺时针旋转90°得到EF,
∴,,
∴,
在△FEC和△AEM中
,
∴,
∴,
∴,
∵为等腰直角三角形,
∴,
∴;
故答案为:;
(2)
不成立.
如图2,过点F作交BC的延长线于点H.
∴,,
∵,
∴,
在△FEC和△AEM中
,
∴,
∴,,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴为等腰直角三角形,
∴.
又∵,
即.
【点睛】
本题考查了旋转的性质,解直角三角形,等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的面积,熟练掌握旋转的性质是解题的关键.
5、
(1)17.2元
(2)7千米
(3)换乘另外出租车更便宜
【分析】
(1)根据图表和甲、乙两地相距6千米,列出算式,再进行计算即可;
(2)根据(1)得出的费用,得出火车站到旅馆的距离超过3千米,但不超过8千米,再根据图表列出方程,求出x的值即可;
(3)根据(1)得出的费用,得出出租车行驶的路程超过8千米,设出租车行驶的路程为x千米,根据图表中的数量,列出方程,求出x的值,从而得出乘原车返回需要的花费,再与换乘另一辆出租车需要的花费进行比较,即可得出答案.
(1)
10+2.4×(6-3)=17.2(元),
答:乘出租车从甲地到乙地需要付款17.2元;
(2)
设火车站到旅馆的距离为x千米.
10+2.4×5=22,
∵10<19.6<22,∴3≤x≤8,
10+2.4(x-3)=19.2,
∴x=7,符合题意.
答:从火车站到旅馆的距离有7千米;
(3)
)设旅馆到机场的距离为x千米,
∵73>22,
∴x>8.
10+2.4(8-3)+3(x-8)=73,
∴x=25.
所以乘原车返回的费用为:10+2.4×(8-3)+3×(25×2-8)=148(元);
换乘另外车辆的费用为:73×2=146(元)所以换乘另外出租车更便宜.
【点睛】
此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
行程(千米)
3千米以内
满3千米但不超过8千米的部分
8千米以上的部分
收费标准(元)
10元
2.4元/千米
3元/千米
【真题汇编】2022年广东省广州市越秀区中考数学五年真题汇总 卷(Ⅲ)(含答案及解析): 这是一份【真题汇编】2022年广东省广州市越秀区中考数学五年真题汇总 卷(Ⅲ)(含答案及解析),共22页。试卷主要包含了已知的两个根为,方程的解是.等内容,欢迎下载使用。
【真题汇编】2022年广东省河源市中考数学真题汇总 卷(Ⅱ)(含答案详解): 这是一份【真题汇编】2022年广东省河源市中考数学真题汇总 卷(Ⅱ)(含答案详解),共25页。
【历年真题】2022年广东省清远市中考数学真题汇总 卷(Ⅱ)(含详解): 这是一份【历年真题】2022年广东省清远市中考数学真题汇总 卷(Ⅱ)(含详解),共24页。试卷主要包含了如图所示,,,,,则等于,下列计算错误的是,的值.等内容,欢迎下载使用。