冀教版七年级下册第八章 整式乘法综合与测试精练
展开冀教版七年级数学下册第八章整式的乘法专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、下列计算正确的是( )
A. B. C. D.
2、下列计算结果正确的是( )
A.a+a2=a3 B.2a6÷a2=2a3
C.2a2•3a3=6a6 D.(2a3)2=4a6
3、下列各式中,不正确的是( )
A.a4÷a3=a B.(a﹣3)2=a﹣6 C.a•a﹣2=a3 D.a2﹣2a2=﹣a2
4、下列计算中,正确的是( )
A. B.
C. D.
5、计算的结果( )
A. B. C. D.
6、下列计算正确的是( )
A. B. C. D.
7、据国家卫健委数据显示,截至2022年1月4日,各地累计报告接种新冠病毒疫苗约2863560000剂( )
A.2.86356×109 B.2.86356×1010
C.0.286356×1010 D.0.286356×109
8、下列计算正确的是( ).
A. B. C. D.
9、据统计,11月份互联网信息中提及“梅州”一词的次数约为48500000,数据48500000科学记数法表示为( )
A. B. C. D.
10、2021年是中国共产党建党100周年,根据中央组织部最新党内统计数据显示,截至2021年6月5日,中国共产党党员总数为9514.8万名,数据9514.8万用科学记数法表示为( )
A. B. C. D.
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、若(2x+y﹣5)0=1无意义,且3x+2y=10,则x=_____,y=_____.
2、截至2021年10月30日,电影《长津湖》的累计票房达到大约5500000000元,数据5500000000用科学记数法表示为_________.
3、若,则___________.
4、从1~9这九个数字中选择三个数字,由这三个数字可以组成六个两位数.先把这六个两位数相加,然后再用所得的和除以所选三个数字之和.你发现了______.
5、若关于x的二次三项式是完全平方式,则k=____.
三、解答题(5小题,每小题10分,共计50分)
1、化简:(x﹣2)2﹣x(x+4).
2、阅读以下材料:苏格兰数学家纳皮尔(J.Npler,1550-1617年)是对数的创始人.他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若(且),那么x叫做以a为底N的对数,记作,比如指数式可以转化为对数式,对数式可以转化为指数式.
我们根据对数的定义可得到对数的一个性质:
,理由如下:
设,,则,,
∴,由对数的定义得.
又∵,
∴.
根据上述材料,结合你所学的知识,解答下列问题:
(1)填空:
① ,
② ,
③ ;
(2)求证:;
(3)拓展运用:计算.
3、计算:.
4、小明在进行两个多项式的乘法运算时,不小心把乘错抄成除以,结果得到,如果小明没有错抄题目,并且计算依然正确,那么得到的结果应该是什么?
5、计解:.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方分别计算即可.
【详解】
解:A、与不属于同类项,不能合并,故A不符合题意;
B、,故B不符合题意;
C、,故C不符合题意;
D、,故D符合题意.
故选:D.
【点睛】
本题主要考查了合并同类项,幂的乘方与积的乘方,解答的关键是对相应的运算法则的掌握.
2、D
【解析】
【分析】
根据合并同类项,同底数幂的除法,单项式乘以单项式,积的乘方法则逐项分析即可.
【详解】
解:A. a与a2不是同类项,不能合并,故不正确;
B. 2a6÷a2=2a4,故不正确;
C. 2a2•3a3=6a5,故不正确;
D. (2a3)2=4a6,正确;
故选D.
【点睛】
本题考查了合并同类项,同底数幂的除法,单项式乘以单项式,积的乘方运算,熟练掌握运算法则是解答本题的关键.
3、C
【解析】
【分析】
分别根据合并同类项、同底数幂的乘法、幂的乘方、负整数指数幂、同底数幂的除法的运算法则计算出各项结果再进行判断即可.
【详解】
解:A.原式=a,∴不符合题意;
B.原式=a﹣6,∴不符合题意;
C.原式=a﹣1,∴符合题意;
D.原式=﹣a2,∴不符合题意;
故选:C.
【点睛】
本题考查合并同类项、同底数幂的乘法、幂的乘方、负整数指数幂、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.
4、B
【解析】
【分析】
根据零指数幂,负指数幂的运算法则计算各个选项后判断.
【详解】
解:A. ,故选项A计算错误,不符合题意;
B. ,故选项B计算正确,符合题意;
C. ,原式不存在,故不符合题意;
D. ,故选项D计算错误,不符合题意;
故选:B
【点睛】
本题主要考查了零指数幂,负指数幂运算.负指数为正指数的倒数;任何非0数的0次幂等于1.
5、A
【解析】
【分析】
利用幂的乘方计算即可求解.
【详解】
解:.
故选:.
【点睛】
本题考查了幂的乘方,掌握(am)n=amn是解决本题的关键.
6、B
【解析】
【分析】
分别根据同底数幂的乘法法则,幂的乘方运算法则,积的乘方运算法则以及同底数幂的除法法则逐一判断即可.
【详解】
、,故本选项不合题意;
B、,故本选项符合题意;
C、,故本选项不合题意;
D、,故本选项不合题意;
故选:B.
【点睛】
本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.
7、A
【解析】
【分析】
用科学记数法表示较大的数时,一般形式为,其中,为整数.
【详解】
解:.
故选A.
【点睛】
本题考查了科学记数法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数,确定与的值是解题的关键.
8、C
【解析】
【分析】
将各式分别计算求解即可.
【详解】
解:A中,错误,故不符合要求;
B中,错误,故不符合要求;
C中,正确,故符合要求;
D中,错误,故不符合要求;
故选C.
【点睛】
本题考查了幂的乘方,同底数幂的乘法与除法,整式的加法等知识.解题的关键在于正确的运算.
9、C
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】
解:48500000科学记数法表示为:48500000=.
故答案为:.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、B
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】
解:9514.8万=95148000=9.5148×107.
故选:B.
【点睛】
此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
二、填空题
1、 0 5
【解析】
【分析】
根据题意直接利用零指数幂的性质得出2x+y﹣5=0,进而得出关于x,y的方程组求出即可.
【详解】
解:∵(2x+y﹣5)0=1无意义,且3x+2y=10,
∴,
解得:.
故答案为:0,5.
【点睛】
本题主要考查零指数幂的性质以及二元一次方程组的解法,正确解二元一次方程组是解题的关键.
2、
【解析】
【分析】
用科学记数法表示较大的数时,一般形式为,其中,为整数.
【详解】
解:.
故答案为:
【点睛】
本题考查了科学记数法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数,确定与的值是解题的关键.
3、
【解析】
【分析】
根据一直等式得到,再整体代入所求式子,逐步运算即可.
【详解】
解:∵,
∴,
∴,
∴
=
=
=
=
=
=
…
=
=
=
=
=
=
故答案为:.
【点睛】
本题考查了代数式求值,根据所给式子的特点合理变形,熟练运用整体思想,掌握规律是解题的关键.
4、六个两位数相加的和除以所选三个数字之和为定值,值为22
【解析】
【分析】
设三个数字分别为,由题意知这六个两位数的和为,然后与三个数字的和作商即可.
【详解】
解:设三个数字分别为
由题意知:这六个两位数的和为
∵
∴可以发现六个两位数的和除以所选三个数字之和为定值,值为22
故答案为:六个两位数的和除以所选三个数字之和为定值,值为22.
【点睛】
本题考查了列代数式,整式的加法、除法运算.解题的关键在于根据题意列代数式.
5、﹣3或1##1或-3
【解析】
【分析】
根据这个基础,结合安全平方公式有和、差两种形式,配齐交叉项,根据恒等变形的性质,建立等式求解即可.
【详解】
解:∵二次三项式是完全平方式,
∴=或=,
∴或,
解得k=﹣3或k=1,
故答案为:﹣3或1.
【点睛】
本题考查了完全平方公式的应用,正确理解完全平方公式有和与差两种形式是解题的关键.
三、解答题
1、4-8x
【解析】
【分析】
先根据完全平方公式,单项式乘多项式进行计算,再合并同类项即可.
【详解】
解:(x﹣2)2﹣x(x+4)
=x2-4x+4-x2-4x
=4-8x.
【点睛】
本题考查了整式的化简,能正确根据整式的运算法则进行化简是解此题的关键,注意运算顺序.
2、 (1)①6;②3;③0
(2)见解析
(3)2
【解析】
【分析】
(1)利用对数的定义,即可求解;
(2)设,,则,,可得,从而得到,即可求证;
(3)根据对数的定义,代入即可求解.
(1)
解:①∵ ,
∴;
②∵
∴;
③∵ ,
∴;
(2)
设,,则,,
∴,
由对数的定义得.
又∵
∴;
(3)
.
【点睛】
本题主要考查了幂的运算,同底数幂相除,明确题意,理解对数的定义是解题的关键.
3、
【解析】
【分析】
根据完全平方公式、平方差公式及单项式与多项式的乘法法则逐个运算,最后合并同类项即可.
【详解】
解:原式.
【点睛】
本题考查了完全平方公式、平方差公式及多项式的乘法法则,属于基础题,计算过程中细心即可.
4、3x3-12x2y+12xy2
【解析】
【分析】
根据被除式=商×除式,所求多项式是3x(x-2y),根据多项式乘多项式的法则计算即可.
【详解】
解:第一个多项式是:3x(x-2y)=3x2-6xy,
正确的结果应该是:(3x2-6xy)(x-2y)
=3x3-6x2y-6x2y+12xy2
=3x3-12x2y+12xy2.
【点睛】
题考查了多项式乘多项式法则,根据被除式、除式、商三者之间的关系列出等式是解题的关键,熟练掌握运算法则也很重要.
5、
【解析】
【分析】
把原式化为,然后根据平方差公式计算即可.
【详解】
解:原式
.
【点睛】
此题考查的是平方差公式,掌握平方差公式的公式结构是解决此题关键.
初中数学冀教版七年级下册第八章 整式乘法综合与测试当堂达标检测题: 这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试当堂达标检测题,共13页。试卷主要包含了已知,则的值是,在下列运算中,正确的是,下列运算正确的是,计算a2•等内容,欢迎下载使用。
数学冀教版第八章 整式乘法综合与测试习题: 这是一份数学冀教版第八章 整式乘法综合与测试习题,共15页。试卷主要包含了下列运算正确的是,计算a2•,下列计算中,正确的是等内容,欢迎下载使用。
初中数学冀教版七年级下册第八章 整式乘法综合与测试复习练习题: 这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试复习练习题,共14页。试卷主要包含了纳米,若的结果中不含项,则的值为,下列计算正确的是等内容,欢迎下载使用。