初中数学冀教版七年级下册第八章 整式乘法综合与测试练习题
展开
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试练习题,共19页。试卷主要包含了下列运算正确的是,若,则代数式的值为,纳米,下列计算正确的是,在下列运算中,正确的是等内容,欢迎下载使用。
冀教版七年级数学下册第八章整式的乘法月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、福建省教育发展基金会通过腾讯公益平台发起“关爱重度残疾儿童”公益募捐活动.首轮网上公益活动募捐计划93万元资金,重点扶持原23个省级扶贫开发工作重点县,助力重度残疾儿童少年实施送教上门工作,计划惠及860名重度残疾儿童.将数据93万用科学记数法表示为( ).A. B. C. D.2、在幼发拉底河岸的古代庙宇图书馆遗址里,曾经发掘出大量的黏土板,美索不达米亚人在这些黏土板上刻出来乘法表、加法表和平方表.用这些简单的平方表,美索不达米亚人这样计算:第一步:(103+95)÷2=99,第二步(103﹣95)÷2=4;第三步:查平方表;知99的平方是9801,第四步:查平方表,知4的平方是16,第五步: 设两因数分别为a和b,写出蕴含其中道理的整式运算( )A.B.C.D.3、下列计算正确的是( )A. B. C. D.4、下列运算正确的是( )A. B. C. D.5、若,则代数式的值为( )A.6 B.8 C.12 D.166、下列运算正确的是( )A.a2+a4=a6 B.(a2)3=a8C.(3a2b3)2=9a4b6 D.a8÷a2=a47、纳米(nm)是非常小的长度单位,.1nm用科学记数法表示为( )A. B. C. D.8、下列计算正确的是( )A.x2+x2=x4 B.(2x2)3=6x6C.3x2÷x=3x D.(x﹣1)2=x2﹣19、在下列运算中,正确的是( )A.(x4)2=x6 B.x3⋅x2=x6 C.x2+x2=2x4 D.x6⋅x2=x810、如图,由4个全等的小长方形与1个小正方形密铺成正方形图案,该图案的面积为49,小正方形的面积为4,若分别用,表示小长方形的长和宽,则下列关系式中不正确的是( )A. B. C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、若,,则________.2、从1~9这九个数字中选择三个数字,由这三个数字可以组成六个两位数.先把这六个两位数相加,然后再用所得的和除以所选三个数字之和.你发现了______.3、第七次全国人口普查结果公布,宜春市常住人口总数大约为501万人,把数字501万用科学记数法表示为______4、计算:______.5、设为正整数,若是完全平方数,则________.三、解答题(5小题,每小题10分,共计50分)1、计算:(6x3+3x2﹣2x)÷(﹣2x)﹣(x﹣2)2.2、计算:(1);(2).3、计算:.4、例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,所以(a+b)2=9,即:a2+2ab+b2=9,又因为ab=1,所以a2+b2=7.根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,求xy的值;(2)填空:若(4﹣x)x=5,则(4﹣x)2+x2= ;(3)如图所示,已知正方形ABCD的边长为x,E,F分别是AD、DC上的点,CF=2,长方形EMFD的面积是12,则x的值为 .5、(1)将图1中的甲图从中间按如图方式剪开,经过重新拼接变换到图乙,比较图甲与图乙,写出得到的公式: ;(2)将图2中的甲图从中间按如图方式剪开,经过重新拼接变换到图乙,比较图甲与图乙,写出得到的公式: ;(3)根据图1、图2中得到的公式,解决下列问题:①计算: ;②若,求的值. -参考答案-一、单选题1、A【解析】【分析】科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:93万=930000=9.3×105,故选:A.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、D【解析】【分析】先观察题干实例的运算步骤,发现对应的数即为 从而可得出结论.【详解】解:由题意得: 故选D【点睛】本题考查的是利用完全平方公式进行运算,掌握“”是解本题的关键.3、C【解析】【分析】根据同底数幂的乘法、积的乘方和幂的乘方分别求出每个式子的值,再判断即可.【详解】A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、,故本选项错误;故选:C.【点睛】本题考查了同底数幂的乘法、积的乘方和幂的乘方,能根据法则求出每个式子的值是解此题的关键.4、A【解析】【分析】根据幂的乘方,同底幂相除,合并同类项,同底数幂相乘逐项判断即可求解.【详解】解:A、,故本选项正确,符合题意;B、,故本选项错误,不符合题意;C、 和 不是同类项,不能合并,故本选项错误,不符合题意;D、,故本选项错误,不符合题意;故选:A【点睛】本题主要考查了幂的乘方,同底幂相除,合并同类项,同底数幂相乘,熟练掌握相关运算法则是解题的关键.5、D【解析】【分析】对已知条件变形为:,然后等式两边再同时平方即可求解.【详解】解:由已知条件可知:,上述等式两边平方得到:,整理得到:,故选:D.【点睛】本题考查了等式恒等变形,完全平方公式的求值等,属于基础题,计算过程中细心即可.6、C【解析】【分析】由合并同类项可判断A,由幂的乘方运算可判断B,由积的乘方运算可判断C,由同底数幂的除法运算可判断D,从而可得答案.【详解】解:不是同类项,不能合并,故A不符合题意; 故B不符合题意; 故C符合题意; 故D不符合题意;故选C【点睛】本题考查的是合并同类项,幂的乘方运算,积的乘方运算,同底数幂的除法,掌握以上基础运算是解本题的关键.7、C【解析】【分析】根据科学记数法的特点即可求解.【详解】解:.故选:C【点睛】本题考查了用科学记数法表示绝对值小于1的数,绝对值小于1的数用科学记数法可以写为的形式,其中1≤|a|<10,n为正整数,n的值为从第一个不为0的数向左数所有0的个数,熟知科学记数法的形式并准确确定a、n的值是解题关键.8、C【解析】【分析】利用合并同类项的法则,积的乘方的法则,单项式除以单项式的法则,完全平方公式对各项进行运算即可.【详解】解:A、x2+x2=2x2,故A不符合题意;B、(2x2)3=8x6,故B不符合题意;C、3x2÷x=3x,故C符合题意;D、(x-1)2=x2-2x+1,故D不符合题意;故选:C.【点睛】本题主要考查整式的混合运算,解答的关键是对相应的运算法则的掌握.9、D【解析】【分析】由题意依据幂的乘方和同底数幂的乘法以及合并同类项逐项进行判断即可.【详解】解:A. (x4)2=x8,故A选项错误;B. x3⋅x2=x5,故B选项错误;C. x2+x2=2x2,故C选项错误;D. x6⋅x2=x8,故D选项正确.故选:D.【点睛】本题考查幂的运算和整式的加法,熟练掌握幂的乘方和同底数幂的乘法以及合并同类项运算法则是解题的关键.10、C【解析】【分析】根据完全平方公式及图形的特点找到长度关系即可依次判断.【详解】解:、因为正方形图案的边长7,同时还可用来表示,故,正确;、由图象可知,即,正确;、由和,可得,,错误;、由,,可得,,所以,正确.故选:.【点睛】本题主要考查了完全平方公式的几何背景,解答本题需结合图形,利用等式的变形来解决问题.二、填空题1、12【解析】【分析】由变形为,再把和代入求值即可.【详解】解:,,.故答案为:12.【点睛】本题主要考查幂的乘方与积的乘方,解题的关键是将变形为.2、六个两位数相加的和除以所选三个数字之和为定值,值为22【解析】【分析】设三个数字分别为,由题意知这六个两位数的和为,然后与三个数字的和作商即可.【详解】解:设三个数字分别为由题意知:这六个两位数的和为∵∴可以发现六个两位数的和除以所选三个数字之和为定值,值为22故答案为:六个两位数的和除以所选三个数字之和为定值,值为22.【点睛】本题考查了列代数式,整式的加法、除法运算.解题的关键在于根据题意列代数式.3、【解析】【分析】用科学记数法表示较大的数时,一般形式为,其中,为整数.【详解】.故答案为:【点睛】本题考查了科学记数法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数,确定与的值是解题的关键.4、【解析】【分析】根据多项式与多项式相乘运算法则求解即可.【详解】解:原式,故答案为:【点睛】本题考查多项式相乘的运算法则,属于基础题,计算过程中细心即可.5、4或19【解析】【分析】将n2+9n-3转化成一个完全平方数再加一个数,只有这个数为0时,原式是完全平方数,求出n再判断,即可得出答案.【详解】解:①n2+9n-3=n2+2n+7n-3=(n2+2n+1)+(7n-4)=(n+1)2+(7n-4),∵n2+9n-3是完全平方数,∴(n+1)2+(7n-4)是完全平方数,∴7n-4=0,∴n=(不是正整数,不符合题意),②n2+9n-3=n2+4n+5n-3=(n2+4n+4)+(5n-7)=(n+2)2+(5n-7),∵n2+9n-3是完全平方数,∴(n+2)2+(5n-7)是完全平方数,∴5n-7=0,∴n=(不是正整数,不符合题意),③n2+9n-3=n2+6n+3n-3=(n2+6n+9)+(3n-12)=(n+3)2+(3n-12),∵n2+9n-3是完全平方数,∴(n+3)2+(3n-12)是完全平方数,∴3n-12=0,∴n=4,④n2+9n-3=n2+8n+n-3=(n2+8n+16)+(n-19)=(n+4)2+(n-19),∵n2+9n-3是完全平方数,∴(n+4)2+(n-19)是完全平方数,∵n是正整数,∴n=19,⑤n2+9n-3=n2+10n-n-3=(n2+10n+25)+(-n-28)=(n+5)2+(-n-28),∵n为正整数,∴-n-28<0,综上所述,n的值为4或19,故答案为:4或19.【点睛】此题主要考查了完全平方数,配方法,用分类讨论的思想解决问题是解本题的关键.三、解答题1、﹣4x2+x﹣3【解析】【分析】直接利用整式的除法运算法则计算得出答案.【详解】原式=6x3÷(﹣2x)+3x2÷(﹣2x)+(﹣2x)÷(﹣2x)﹣(x﹣2)2=﹣3x2﹣x+1﹣(x2﹣4x+4)=﹣3x2﹣x+1﹣x2+4x﹣4=﹣4x2+x﹣3.【点睛】此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.2、 (1)(2)【解析】【分析】(1)根据有理数的乘方,负整指数幂,零次幂的运算法则进行计算即可;(2)先计算括号内的,将除法转化为乘法运算,根据乘法分配律进行计算,再进行有理数的混合运算即可;(1)解:(2)解:【点睛】本题考查了有理数的混合运算,零次幂,负整指数幂,掌握运算法则是解题的关键.3、【解析】【分析】原式根据同底数幂的乘法、幂的乘方和单项式除以单项式的运算法则计算出各项后再合并即可.【详解】解:.【点睛】本题主要考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.4、 (1)12(2)6(3)5【解析】【分析】(1)根据代入计算即可;(2)由于(4-x)+x=4,将转化为,然后代入计算即可;(3)根据面积公式可得(x-1)(x-2)=12,设x-1=a,x-2=b,再根据代入得到,进而求出x.(1)解:∵x+y=8,∴,即,又∵,∴2xy=24,∴xy=12;(2)解:=16-2×5=6,故答案为:6;(3)解:由题意得(x-1)(x-2)=12,设x-1=a,x-2=b,则ab=12, ∴a-b=(x-1)-(x-2)=1,又∵,∴,∴,∴2x-3=±7,∴x=5或x=-2(舍).5、(1);(2);(3)①;②【解析】【分析】(1)根据图甲的面积大正方形的面积小正方形的面积,即可得出答案;(2)根据图甲的面积大正方形的面积小正方形的面积,即可得出答案;(3)①利用即可求解;②将即可求解.【详解】解:(1)图乙阴影部分的面积大正方形的面积小正方形的面积,图甲的面积,图乙阴影部分的面积图甲的面积,,故答案是:;(2)甲图长方形的长是:,宽是:,面积是:;乙图大正方形的边长是:,面积为:,中间的小正方形的边长为:,面积为:,,故答案是:;(3)①计算:,故答案是:;②,,,.【点睛】本题考查了平方差公式的几何背景,解题的关键是用不同的方法表示图形的面积.
相关试卷
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试同步训练题,共16页。试卷主要包含了下列计算正确的是,下列运算正确的是,纳米等内容,欢迎下载使用。
这是一份冀教版七年级下册第八章 整式乘法综合与测试课时作业,共16页。试卷主要包含了下列计算正确的是,电影《攀登者》中有句台词,若,则的值为,已知ax2+24x+b=,若,则代数式的值为等内容,欢迎下载使用。
这是一份冀教版七年级下册第八章 整式乘法综合与测试课后练习题,共17页。试卷主要包含了下列运算正确的是,已知,,c=,若的结果中不含项,则的值为,下列各式中,不正确的是等内容,欢迎下载使用。