![【历年真题】2022年陕西省咸阳市中考数学历年真题汇总 (A)卷(含详解)第1页](http://img-preview.51jiaoxi.com/2/3/12767688/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【历年真题】2022年陕西省咸阳市中考数学历年真题汇总 (A)卷(含详解)第2页](http://img-preview.51jiaoxi.com/2/3/12767688/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【历年真题】2022年陕西省咸阳市中考数学历年真题汇总 (A)卷(含详解)第3页](http://img-preview.51jiaoxi.com/2/3/12767688/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【历年真题】2022年陕西省咸阳市中考数学历年真题汇总 (A)卷(含详解)
展开
这是一份【历年真题】2022年陕西省咸阳市中考数学历年真题汇总 (A)卷(含详解),共25页。试卷主要包含了下列说法正确的是,和按如图所示的位置摆放,顶点B等内容,欢迎下载使用。
2022年陕西省咸阳市中考数学历年真题汇总 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小明同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是( ).分数252627282930人数351014126A.该组数据的众数是28分 B.该组数据的平均数是28分C.该组数据的中位数是28分 D.超过一半的同学体育测试成绩在平均水平以上2、已知,则的值为( )A. B. C. D.3、已知二次函数,则关于该函数的下列说法正确的是( )A.该函数图象与轴的交点坐标是B.当时,的值随值的增大而减小C.当取1和3时,所得到的的值相同D.将的图象先向左平移两个单位,再向上平移5个单位得到该函数图象4、为庆祝建党百年,六年级一班举行手工制作比赛,下图小明制作的一个小正方体盒子展开图,把展开图叠成小正方体后,有“爱”字一面的相对面的字是( )A.的 B.祖 C.国 D.我5、下列图形中,既是中心对称图形又是轴对称图形的是( )A. B.C. D.6、对于新能源汽车企业来说,2021年是不平凡的一年,无论是特斯拉还是中国的蔚来、小鹏、理想都实现了销量的成倍增长,下图是四家车企的标志,其中既是轴对称图形,又是中心对称图形的是( )A. B.C. D.7、等腰三角形的一个内角是,则它的一个底角的度数是( )A. B.C.或 D.或8、下列说法正确的是( )A.任何数的绝对值都是正数 B.如果两个数不等,那么这两个数的绝对值也不相等C.任何一个数的绝对值都不是负数 D.只有负数的绝对值是它的相反数9、和按如图所示的位置摆放,顶点B、C、D在同一直线上,,,.将沿着翻折,得到,将沿着翻折,得,点B、D的对应点、与点C恰好在同一直线上,若,,则的长度为( ).A.7 B.6 C.5 D.410、如图,的三个顶点和它内部的点,把分成个互不重叠的小三角形;的三个顶点和它内部的点,,把分成个互不重叠的小三角形;的三个顶点和它内部的点,,,把分成个互不重叠的小三角形;的三个顶点和它内部的点,,,…,,把分成( )个互不重叠的小三角形.A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、函数y=(m﹣2)x|m﹣1|+2是一次函数,那么m的值为___.2、如图,海中有一个小岛A,一艘轮船由西向东航行,在点处测得小岛A在它的北偏东方向上,航行12海里到达点处,测得小岛A在它的北偏东方向上,那么小岛A到航线的距离等于____________海里.3、如图,,,,,,则_______.4、如图是某手机店今年8月至12月份手机销售额统计图,根据图中信息,可以判断该店手机销售额变化最大的相邻两个月是________(填月份).5、已知三点(a,m)、(b,n)和(c,t)在反比例函数y=(k>0)的图像上,若a<0<b<c,则m、n和t的大小关系是 ___.(用“<”连接)三、解答题(5小题,每小题10分,共计50分)1、如图,平面直角坐标系中,已知点,,,是的边上任意一点,经过平移后得到△,点的对应点为.(1)直接写出点,,的坐标.(2)在图中画出△.(3)连接,,,求的面积.(4)连接,若点在轴上,且三角形的面积为8,请直接写出点的坐标.2、某中学为了了解学生“大课间操”的活动情况,在七、八、九年级学生中,分别抽取相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项).调查结果的部分数据如图所示的统计图表.其中八年级学生最喜欢排球的人数为12人.七年级学生最喜欢的运动项目人数统计表项目篮球排球跳绳踢键子其他人数/人8715m6请根据统计图表解答下列问题:(1)本次调查共抽取了多少名学生?(2)七年级学生“最喜欢踢键子”的学生人数________.(3)补全九年级学生最喜欢的运动项目人数统计图.(4)求出所有“最喜欢跳绳”的学生占抽样总人数的百分比.3、如图,点 A、B、C为平面内不在同一直线上的三点.点D为平面内一个动点.线段AB,BC,CD,DA的中点分别为M、N、P、Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形③存在无数个中点四边形MNPQ是矩形④存在无数个中点四边形MNPQ是正方形所有正确结论的序号是___.4、如图在中,,过点A作的垂线.垂足为D,E为线段上一动点(不与点C,点D重合),连接.以点A为中心,将线段逆时针旋转得到线段,连接,与线段交于点G.(1)求证:;(2)用等式表示线段与的数量关系,并证明.5、(阅读材料)我们知道,任意一个正整数n都可以进行这样的分解:(p,q是正整数,且).在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称是n的最佳分解,并规定当是n的最佳分解时,.例如:18可以分解成,或,因为,所以是18的最佳分解,从而.(1) , ,…;(2),, ,…;猜想: (x是正整数).(应用规律)(3)若,且x是正整数,求x的值;(4)若,请直接写出x的值. -参考答案-一、单选题1、B【分析】由众数的含义可判断A,由平均数的含义可判断B,D,由中位数的含义可判断C, 从而可得答案.【详解】解:由分出现次,出现的次数最多,所以该组数据的众数是28分,故A不符合题意;该组数据的平均数是 故B符合题意;50个数据,按照从小到大的顺序排列,第25个,26个数据为28分,28分,所以中位数为:(分),故C不符合题意;因为超过平均数的同学有: 所以超过一半的同学体育测试成绩在平均水平以上,故D不符合题意;故选B【点睛】本题考查的是平均数,众数,中位数的含义,掌握“根据平均数,众数,中位数的含义求解一组数据的平均数,众数,中位数”是解本题的关键.2、A【分析】由设,代入计算求解即可.【详解】解:∵∴设∴故选:A【点睛】本题主要考查发比例的性质,熟练掌握比例的性质是解答本题的关键.3、C【分析】把,代入,即可判断A,由二次函数的图象开口向上,对称轴是直线,即可判断B,当取和,代入,即可判断C,根据函数图象的平移规律,即可判断D.【详解】∵二次函数的图象与轴的交点坐标是,∴A选项错误;∵二次函数的图象开口向上,对称轴是直线,∴当时,的值随值的增大而增大,∴B选项错误;∵当取和时,所得到的的值都是11,∴C选项正确;∵将的图象先向左平移两个单位,再向上平移个单位得到的图象,∴D选项错误.故选:C.【点睛】本题主要考查二次函数的图象和性质,理解二次函数的性质是解题的关键.4、B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,第一列的“我”与“的”是相对面,第二列的“我”与“国”是相对面,“爱”与“祖”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5、A【详解】解:.既是中心对称图形又是轴对称图形,故此选项符合题意;.是轴对称图形,不是中心对称图形,故此选项不合题意;.是轴对称图形,不是中心对称图形,故此选项不合题意;.不是轴对称图形,是中心对称图形,故此选项不合题意.故选:A.【点睛】本题考查的是中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、C【分析】根据轴对称图形与中心对称图形的概念结合所给图形的特点即可得出答案.【详解】解:A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,不是中心对称图形,故错误;C、既是轴对称图形,又是中心对称图形,故正确;D、既不是轴对称图形,也不是中心对称图形,故错误.故选:C.【点睛】本题考查了中心对称图形及轴对称图形的特点,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.7、A【分析】由题意知, 100°的内角为等腰三角形的顶角,进而可求底角.【详解】解:∵在一个内角是 100°的等腰三角形中,该内角必为顶角∴底角的度数为故选A.【点睛】本题考查了等腰三角形的性质,三角形的内角和定理.解题的关键在于明确该三角形为钝角等腰三角形.8、C【分析】数轴上表示数的点与原点的距离是数的绝对值,非负数的绝对值是它的本身,非正数的绝对值是它的相反数,互为相反数的两个数的绝对值相等,再逐一分析各选项即可得到答案.【详解】解:任何数的绝对值都是非负数,故A不符合题意;如果两个数不等,那么这两个数的绝对值可能相等,也可能不相等,比方 但 故B不符合题意;任何一个数的绝对值都不是负数,表述正确,故C符合题意;非正数的绝对值是它的相反数,故D不符合题意;故选C【点睛】本题考查的是绝对值的含义,求解一个数的绝对值,掌握“绝对值的含义”是解本题的关键.9、A【分析】由折叠的性质得,,故,,推出,由,推出,根据AAS证明,即可得,,设,则,由勾股定理即可求出、,由计算即可得出答案.【详解】由折叠的性质得,,∴,,∴,∵,∴,∴,在与中,,∴,∴,,设,则,∴,解得:,∴,,∴.故选:A.【点睛】本题考查折叠的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理和性质是解题的关键.10、B【分析】从前三个内部点可总结规律,即可得三角形内部有n个点时有个互不重叠的小三角形.【详解】由,,三个内部点可总结出规律每增加一个内部点三角形内部增加两个小三角形,∴的三个顶点和它内部的点,,,…,,把分成个互不重叠的小三角形.故选:B.【点睛】本题考查了图形类规律问题,图形规律就是根据所给出的图形的结构特特征,需要认真分析观察、分析、归纳,从图形所蕴含的数字信息总结出一般的数式规律,然后再应用规律做题.用代数式表示数字或图形的规律,有其自身的解题规律,掌握其正确的解题方法,这类题目将会迎刃而解.二、填空题1、0【分析】根据一次函数的定义,列出关于m的方程和不等式进行求解即可.【详解】解:由题意得,|m-1|=1且m-2≠0,解得:m=2或m=0且m≠2,∴m=0.故答案为:0.【点睛】本题主要考查了一次函数,一次函数y=kx+b的条件是:k、b为常数,k≠0,自变量次数为1.2、【分析】如图,过点A作AD⊥BC于D,根据题意可知∠EBA=60°,∠FCA=30°,EB⊥BC,FC⊥BC,可得∠ABD=30°,∠ACD=60°,∠CAD=30°,根据外角性质可得∠BAC=30°,可得AC=BC,根据含30°角的直角三角形的性质可得出CD的长,利用勾股定理即可求出AD的长,可得答案.【详解】如图,过点A作AD⊥BC于D,根据题意可知∠EBA=60°,∠FCA=30°,EB⊥BC,FC⊥BC,BC=12,∴∠ABD=30°,∠ACD=60°,∠CAD=30°,∴∠BAC=∠ACD-∠ABD=30°,∴AC=BC=12,∴CD=AC=6,∴AD===.故答案为:【点睛】本题考查方向角的定义、三角形外角性质、含30°角的直角三角形的性质及勾股定理,三角形的一个外角,等于和它不相邻的两个内角的和;30°角所对的直角边,等于斜边的一半;熟练掌握相关性质及定义是解题关键.3、17【分析】由“”可证,可得,,即可求解.【详解】解:,,在和中,,,,,,故答案为:17.【点睛】本题考查了全等三角形的判定和性质,解题的关键是证明三角形全等.4、【分析】计算出相邻两个月销售额的变化,然后比较其绝对值的大小.【详解】解:根据图中的信息可得,相邻两个月销售额的变化分别为:、、、,∵,∴该店手机销售额变化最大的相邻两个月是,故答案为:【点睛】此题考查了有理数减法的应用以及有理数大小的比较,解题的关键是掌握有理数减法运算法则以及有理数大小比较规则.5、【分析】先画出反比例函数y=(k>0)的图象,在函数图象上描出点(a,m)、(b,n)和(c,t),再利用函数图象可得答案.【详解】解:如图,反比例函数y=(k>0)的图像在第一,三象限,而点(a,m)、(b,n)和(c,t)在反比例函数y=(k>0)的图像上,a<0<b<c, 即 故答案为:【点睛】本题考查的是反比例函数的图象与性质,掌握“利用数形结合比较反比例函数值的大小”是解本题的关键.三、解答题1、(1),,(2)见解析(3)的面积=6(4)或【分析】(1)利用P点和P1的坐标特征得到平移的方向与距离,然后利用此平移规律写出点A1,B1,C1的坐标;(2)利用点A1,B1,C1的坐标描点即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△AOA1的面积;(4)设Q(0,t),利用三角形面积公式得到×8×|t−1|=8,然后解方程求出t得到Q点的坐标.(1)解:,,;(2)解:如图,△为所作;(3)解:的面积,,;(4)解:设,,,,三角形的面积为8,,解得或,点的坐标为或.【点睛】本题考查了作图−平移变换:作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.2、(1)人;(2);(3)作图见解析;(4)【分析】(1)根据扇形统计图的性质,得八年级喜欢排球的学生比例,结合八年级学生最喜欢排球的人数计算,即可得八年级抽取的学生数,结合题意,通过计算即可得到答案;(2)根据(1)的结论,得七年级抽取的学生数为人,根据题意计算,即可得到答案;(3)根据(1)的结论,得九年级抽取的学生数为人,根据条形统计图的性质补全,即可得到答案;(4)首先计算得抽取的七、八、九年级学生中喜欢跳绳的人数,根据用样品评估总体的形式分析,即可得到答案.【详解】(1)根据题意,八年级喜欢排球的学生比例为: ∵八年级学生最喜欢排球的人数为12人∴八年级抽取的学生数为:人∵在七、八、九年级学生中,分别抽取相同数量的学生对“你最喜欢的运动项目”进行调查∴本次调查共抽取的学生人数为:人(2)根据(1)的结论,得七年级抽取的学生数为人七年级学生“最喜欢踢键子”的学生人数为:人∴ 故答案为:;(3)根据(1)的结论,得九年级抽取的学生数为人∴九年级学生最喜欢跳绳的人数为人九年级学生最喜欢的运动项目人数统计图如下:(4)抽取的七、八、九年级学生中,喜欢跳绳的人数为:人∴所有“最喜欢跳绳”的学生占抽样总人数的百分比为:.【点睛】本题考查了调查统计的知识;解题的关键是熟练掌握扇形统计图、条形统计图、用样品评估总体的性质,从而完成求解.3、①②③【分析】根据中点四边形的性质:一般中点四边形是平行四边形,对角线相等的四边形的中点四边形是菱形,对角线垂线的中点四边形是矩形,对角线相等且垂直的四边形的中点四边形是正方形,由此即可判断.【详解】解:∵一般中点四边形是平行四边形,对角线相等的四边形的中点四边形是菱形,对角线垂线的中点四边形是矩形,对角线相等且垂直的四边形的中点四边形是正方形,∴存在无数个中点四边形MNPQ是平行四边形,存在无数个中点四边形MNPQ是菱形,存在无数个中点四边形MNPQ是矩形.故答案为:①②③【点睛】本题考查中点四边形,平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.4、(1)见解析(2)线段与的数量关系是.证明见解析【分析】(1)由题意知,故.(2)过点A作的垂线,可证得,由全等三角形性质知,由相似三角形的性质即可推导得.(1)∵,∴,∵,∴,∴(2)连接.在和中,∴,∴,∵,∴,∴,∴,∵,∴∵,∴【点睛】本题考查了全等三角形的判定及性质,等腰三角形的性质,由相似的性质得另外两边与中位线的交点为中点.5、(1),;(2)1,1;(3)8;(4)6.【分析】(1)由信息可知15的最佳分解是3×5,24的最佳分解是4×6,代入即可;(2)由平方数的特点可知结果为1;(3)把x2+x化为x(x+1)即可得出结果;(4)把(x2-11)写成完全平方数形式即可得出x.(1)解:∵3×5=15∴∵4×6=24∴(2)解:∵4,9,25都是平方数,∴,;(3)解:∵x2+x=x(x+1)∴x(x+1)=89∴x=8(4)解:∵由(2)的解题过程可知(x2-11)是一个完全平方数.∴x2-11=x2-12+1∴2x=12∴x=6【点睛】本题考查了对新定义的理解和应用,解题的关键是从题目所给的信息中分析得出规律从而掌握分解因数的方法.还要熟悉完全平方数的概念.
相关试卷
这是一份【历年真题】:2022年江西省宜春市中考数学历年真题汇总 (A)卷(含答案详解),共23页。试卷主要包含了下列各点在反比例的图象上的是,若,则的值为,的相反数是,下列说法正确的是等内容,欢迎下载使用。
这是一份【历年真题】2022年上海市普陀区中考数学历年真题汇总 卷(Ⅲ)(含答案详解),共22页。试卷主要包含了下列四个实数中,无理数是,多项式去括号,得等内容,欢迎下载使用。
这是一份【历年真题】2022年江西省上饶市中考数学历年真题汇总 卷(Ⅲ)(含答案详解),共23页。