【历年真题】2022年山东省甄城县中考数学真题汇总 卷(Ⅱ)(含答案及详解)
展开
这是一份【历年真题】2022年山东省甄城县中考数学真题汇总 卷(Ⅱ)(含答案及详解),共26页。
2022年山东省甄城县中考数学真题汇总 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在 Rt 中,,如果,那么等于( )A. B. C. D.2、数学活动课上,同学们想测出一个残损轮子的半径,小宇的解决方案如下:如图,在轮子圆弧上任取两点A,B,连接,再作出的垂直平分线,交于点C,交于点D,测出的长度,即可计算得出轮子的半径.现测出,则轮子的半径为( )A. B. C. D.3、已知,则∠A的补角等于( )A. B. C. D.4、若反比例函数的图象经过点,则该函数图象不经过的点是( )A.(1,4) B.(2,-2) C.(4,-1) D.(1,-4)5、将一长方形纸条按如图所示折叠,,则( )A.55° B.70° C.110° D.60°6、某物体的三视图如图所示,那么该物体形状可能是( )A.圆柱 B.球 C.正方体 D.长方体7、如图,与位似,点O是位似中心,若,,则( )A.9 B.12 C.16 D.368、下列格点三角形中,与右侧已知格点相似的是( )A. B.C. D.9、如图,二次函数y=ax2+bx+c(a>0)的图像经过点A(﹣1,0),点B(m,0),点C(0,﹣m),其中2<m<3,下列结论:①2a+b>0,②2a+c<0,③方程ax2+bx+c=﹣m有两个不相等的实数根,④不等式ax2+(b﹣1)x<0的解集为0<x<m,其中正确结论的个数为( )A.1 B.2 C.3 D.410、下列命题,是真命题的是( )A.两条直线被第三条直线所截,内错角相等B.邻补角的角平分线互相垂直C.相等的角是对顶角D.若,,则第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,三角形纸片中,点、、分别在边、、上,.将这张纸片沿直线翻折,点与点重合.若比大,则__________.2、如图是某个几何体的表面展开图,若围成几何体后,与点E重合的两个点是______.3、如图,为一长条形纸带,,将沿折叠,C、D两点分别、对应,若,则的度数为_________.4、如图,已知的三个角,,,,将绕点顺时针旋转得到,如果,那么_______.5、一个实数的平方根为与,则这个实数是________.三、解答题(5小题,每小题10分,共计50分)1、如图,直线与x,y轴分别交于点B,A,抛物线过点A.(1)求出点A,B的坐标及c的值;(2)若函数在时有最小值为,求a的值;(3)当时,在抛物线上是否存在点M,使得,若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由.2、已知抛物线的顶点为,且过点.(1)求抛物线的解析式;(2)将抛物线先向左平移2个单位长度,再向下平移个单位长度后得到新抛物线.①若新抛物线与x轴交于A,B两点(点A在点B的左侧),且,求m的值;②若,是新抛物线上的两点,当时,均有,请直接写出n的取值范围.3、计算:(1);(2).4、在实数范围内分解因式:2x2﹣3xy﹣y2.5、如图,数轴上A和B.(1)点A表示 ,点B表示 .(2)点C表示最小的正整数,点D表示的倒数,点E表示,在数轴上描出点C、D、E.(3)将该数轴上点A、B、C、D、E表示的数用“<”连起来: . -参考答案-一、单选题1、D【分析】直接利用锐角三角函数关系进而表示出AB的长.【详解】解:如图所示:∠A=α,AC=1,cosα=,故AB=.故选:D【点睛】此题主要考查了锐角三角函数关系,正确得出边角关系是解题关键.2、C【分析】由垂径定理,可得出BC的长;连接OB,在Rt△OBC中,可用半径OB表示出OC的长,进而可根据勾股定理求出得出轮子的半径即可.【详解】解:设圆心为O,连接OB.Rt△OBC中,BC=AB=20cm,根据勾股定理得:OC2+BC2=OB2,即:(OB-10)2+202=OB2,解得:OB=25;故轮子的半径为25cm.故选:C.【点睛】本题考查垂径定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.3、C【分析】若两个角的和为 则这两个角互为补角,根据互补的含义直接计算即可.【详解】解: , ∠A的补角为: 故选C【点睛】本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.4、A【分析】由题意可求反比例函数解析式,将点的坐标一一打入求出xy的值,即可求函数的图象不经过的点.【详解】解:因为反比例函数的图象经过点,所以,选项A,该函数图象不经过的点(1,4),故选项A符合题意;选项B,该函数图象经过的点(2,-2),故选项B不符合题意;选项C,该函数图象经过的点(4,-1),故选项C不符合题意;选项B,该函数图象经过的点(1,-4),故选项D不符合题意;故选A.【点睛】考查了反比例函数图象上点的坐标特征,熟练运用反比例函数图象上点的坐标满足其解析式是本题的关键.5、B【分析】从折叠图形的性质入手,结合平行线的性质求解.【详解】解:由折叠图形的性质结合平行线同位角相等可知,,,.故选:B.【点睛】本题考查折叠的性质及平行线的性质,解题的关键是结合图形灵活解决问题.6、A【分析】根据主视图和左视图都是矩形,俯视图是圆,可以想象出只有圆柱符合这样的条件,因此物体的形状是圆柱.【详解】解:根据三视图的知识,主视图以及左视图都为矩形,俯视图是一个圆,则该几何体是圆柱. 故选:A.【点睛】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.熟悉简单的立体图形的三视图是解本题的关键.7、D【分析】根据位似变换的性质得到,得到,求出,根据相似三角形的面积比等于相似比的平方计算即可.【详解】解:与位似,,,,,,,故选:D.【点睛】本题考查的是位似变换的概念和性质、相似三角形的性质,解题的关键是掌握相似三角形的面积比等于相似比的平方.8、A【分析】根据题中利用方格点求出的三边长,可确定为直角三角形,排除B,C选项,再由相似三角形的对应边成比例判断A、D选项即可得.【详解】解:的三边长分别为:,,,∵,∴为直角三角形,B,C选项不符合题意,排除;A选项中三边长度分别为:2,4,,∴,A选项符合题意,D选项中三边长度分别为:,,,∴,故选:A.【点睛】题目主要考查相似三角形的性质及勾股定理的逆定理,理解题意,熟练掌握运用相似三角形的性质是解题关键.9、C【分析】利用二次函数的对称轴方程可判断①,结合二次函数过 可判断②,由与有两个交点,可判断③,由过原点,对称轴为 求解函数与轴的另一个交点的横坐标,结合原二次函数的对称轴及与轴的交点坐标,可判断④,从而可得答案.【详解】解: 二次函数y=ax2+bx+c(a>0)的图像经过点A(﹣1,0),点B(m,0), 抛物线的对称轴为: 2<m<3,则 而图象开口向上 即 故①符合题意; 二次函数y=ax2+bx+c(a>0)的图像经过点A(﹣1,0), 则 则 故②符合题意; 与有两个交点, 方程ax2+bx+c=﹣m有两个不相等的实数根,故③符合题意;关于对称, 过原点,对称轴为 该函数与抛物线的另一个交点的横坐标为: 不等式ax2+(b﹣1)x<0的解集不是0<x<m,故④不符合题意;综上:符合题意的有①②③故选:C【点睛】本题考查的是二次函数的图象与性质,利用二次函数的图象判断及代数式的符号,二次函数与一元二次方程,不等式之间的关系,熟练的运用数形结合是解本题的关键.10、B【分析】利用平行线的性质、邻补角的定义及性质、对顶角的定义等知识分别判断后即可确定正确的选项.【详解】解:A、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意;、邻补角的角平分线互相垂直,正确,是真命题,符合题意;、相等的角不一定是对顶角,故错误,是假命题,不符合题意;、平面内,若,,则,故原命题错误,是假命题,不符合题意,故选:.【点睛】考查了命题与定理的知识,解题的关键是了解平行线的性质、邻补角的定义及性质、对顶角的定义等知识,难度不大.二、填空题1、【分析】由折叠可知,由平角定义得 + =120°,再根据比大,得到 - =,即可解得的值.【详解】解:由折叠可知,∵ + + =180°,∴ + =120°,∴ =120°-,∵比大,∴ - =,即120°- - =解得 =,故答案为:【点睛】此题考查折叠的性质、平角的定义及一元一次方程的解法,掌握相应的性质和解法是解答此题的关键.2、A和C【分析】根据题意可知该几何体的展开图是四棱锥的平面展开图,找出重合的棱,即可找到与点E重合的两个点.【详解】折叠之后CD和DE重合为一条棱,C点和E点重合;AH和EF重合为一条棱,A点和E点重合.所以与点E重合的两个点是A点和C点.故答案为:A和C.【点睛】此题考查的是四棱锥的展开图,解决此题的关键是运用空间想象能力把展开图折成四棱锥,找到重合的点.3、度【分析】由折叠得,由长方形的性质得到∠1=,由,求出∠2的度数,即可求出的度数.【详解】解:由折叠得,∵四边形是长方形,∴,∴∠1=,∴,∵,∴,得,∴,∴,故答案为:.【点睛】此题考查了折叠的性质,平行线的性质,正确掌握折叠的性质及长方形的性质是解题的关键.4、度【分析】根据求出,即可求出旋转角的度数.【详解】解:绕点顺时针旋转得到,则,,故答案为:.【点睛】本题考查了旋转的性质,解题关键是明确旋转角度为的度数.5、【分析】根据平方根的性质,一个正数的平方根有两个,互为相反数,0的平方根是它本身,即可得到结果.【详解】解:根据题意得:①这个实数为正数时:3x+3+x-1=0,∴x=-,∴(x-1)2=,②这个实数为0时:3x+3=x-1,∴x=-2,∵x-1=-3≠0,∴这个实数不为0.故答案为:.【点睛】本题考查了平方根的性质,分类讨论并进行取舍是本题的关键.三、解答题1、(1)A(0,1),B(-2,0),c=1.(2)5或.(3),,【分析】(1)根据两轴的特征可求y=x+1与x轴,y轴的交点坐标,然后将点A坐标代入抛物线解析式即可;(2)将抛物线配方为顶点式,根据抛物线开口向上与向下两种情况,当a>0,在—1≤x≤4时,抛物线在顶点处取得最小值,当x=1时,y有最小值, 当a<0,在—1≤x≤4时,离对称轴越远函数值越小,即可求解;(3)存在符合条件的M点的坐标, 当时,抛物线解析式为:,设点P在y轴上,使△ABP的面积为1,点P(0,m),, 求出点P2(0,0),或P1(0,2),,可得点M在过点P与AB平行的两条直线上,①过点P2与 AB平行直线的解析式为:,联立方程组,解方程组得出,,②过点P1与AB平行的直线解析式为:,联立方程组,解方程组得出即可.(1)解:在y=x+1中,令y=0,得x=-2;令x=0,得y=1,∴A(0,1),B(-2,0).∵抛物线y=ax2-2ax+c过点A,∴c=1.(2)解:y=ax2-2ax+1=a(x2-2x+1-1)+1=a(x-1)2+1-a,∴抛物线的对称轴为x=1,当a>0,在—1≤x≤4时,抛物线在顶点处取得最小值,∴当x=1时,y有最小值,此时1-a=—4,解得a=5; 当a<0,在—1≤x≤4时,∵4-1=3>1-(-1)=2,离对称轴越远函数值越小,∴当x=4时,y有最小值, 此时9a+1-a=—4,解得a= , 综上,a的值为5或.(3)解:存在符合条件的M点的坐标,分别为,,,当时,抛物线解析式为:,设点P在y轴上,使△ABP的面积为1,点P(0,m),∵, ∴,解得,∴点P2(0,0),或P1(0,2),∴,∴点M在过点P与AB平行的两条直线上,①过点P2与 AB平行直线的解析式为:,将代入中,,解得,,∴,②过点P1与AB平行的直线解析式为:,将代入中,,解得,∴ ,综上所述,存在符合条件的M点的坐标,分别为,,.【点睛】本题考查一次函数与两轴的交点,抛物线顶点式,二次函数的最小值,平行线性质,联立方程组,三角形面积,掌握一次函数与两轴的交点,抛物线顶点式,二次函数的最小值,平行线性质,联立解方程组,三角形面积公式是解题关键.2、(1)(2)①②【分析】(1)二次函数的顶点式为,将点坐标代入求解的值,回代求出解析式的表达式;(2)①平移后的解析式为,可知对称轴为直线,设点坐标到对称轴距离为,有点坐标到对称轴距离为,,,可得,解得,可知点坐标为,将坐标代入解析式解得的值即可;②由题意知该抛物线图像开口向上,对称轴为直线,点关于对称轴对称的点的横坐标为,知,解得,由时,均有可得计算求解即可(1)解:∵的顶点式为∴由题意得解得(舍去),,,∴抛物线的解析式为.(2)解:①平移后的解析式为∴对称轴为直线∴设点坐标到对称轴距离为,点坐标到对称轴距离为∴,∵∴解得∴点坐标为将代入解析式解得∴的值为8.②解:由题意知该抛物线图像开口向上,对称轴为直线,点关于对称轴对称的点的横坐标为,∴解得 ∵时,均有∴解得∴的取值范围为.【点睛】本题考查了二次函数的解析式、图象的平移与性质、与x轴的交点坐标等知识.解题的关键在于对二次函数知识的熟练灵活把握.3、(1)(2)【分析】(1)先把括号内的二次根式化简及除法运算,再计算二次根式的除法运算,最后合并同类二次根式即可;(2)先计算括号内的二次根式的减法运算,再计算二次根式的除法运算,从而可得答案.(1)解: (2)解: 【点睛】本题考查的是二次根式的混合运算,掌握“二次根式的混合运算的运算顺序”是解本题的关键.4、【分析】先令把看作是常数,再解一元二次方程可得从而可得因式分解的答案.【详解】解:令 【点睛】本题考查的是在实数范围内进行因式分解,一元二次方程的解法,掌握“利用公式法解一元二次方程”是解本题的关键.5、(1),(2)见解析(3)1<<<<【分析】(1)根据数轴直接写出A、B所表示的数即可;(2)根据最小的正整数是1,的倒数是,然后据此在数轴上找到C、D、E即可;(3)将A、B、C、D、E表示的数从小到大排列,再用 “<”连接即可.(1)解:由数轴可知A、B表示的数分别是:,.故答案为:,.(2)解:∵最小的正整数是1,的倒数是∴C表示的数是1,D表示的数是,∴如图:数轴上的点C、D、E即为所求.(3)解:根据(2)的数轴可知,将点A、B、C、D、E表示的数用“<”连接如下:1<<<<.【点睛】本题主要考查了在数轴上表示数、倒数、最小的正整数、倒数以及利用数轴比较有理数的大小,在数轴上正确表示有理数成为解答本题的关键.
相关试卷
这是一份2022年山东省甄城县中考数学三年高频真题汇总 卷(Ⅰ)(含详解),共24页。试卷主要包含了下列计算错误的是,在下列运算中,正确的是等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年山东省甄城县中考数学模拟考试 A卷(含答案详解),共26页。试卷主要包含了下列方程中,解为的方程是,下列式子运算结果为2a的是.等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年山东省甄城县中考数学第三次模拟试题(含答案详解),共20页。试卷主要包含了若,则代数式的值为,和按如图所示的位置摆放,顶点B,若抛物线的顶点坐标为等内容,欢迎下载使用。