【难点解析】2022年北京市昌平区中考数学三年高频真题汇总 卷(Ⅱ)(含答案及详解)
展开
这是一份【难点解析】2022年北京市昌平区中考数学三年高频真题汇总 卷(Ⅱ)(含答案及详解),共24页。试卷主要包含了如图,在中,,,,分别在,下列利用等式的性质,错误的是,下列说法正确的是等内容,欢迎下载使用。
2022年北京市昌平区中考数学三年高频真题汇总 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某商品原价为 200 元,连续两次平均降价的百分率为 a ,连续两次降价后售价为 148 元, 下面所列方程正确的是 ( )A.200(1 a)2 148 B.200(1 a)2 148C.200(1 2a)2 148 D.200(1 a 2) 1482、下列方程是一元二次方程的是( )A.x2+3xy=3 B.x2+=3 C.x2+2x D.x2=33、甲、乙两地相距s千来,汽车从甲地匀速行驶到乙地,行驶的时间t(小时)关于行驶速度v(千米时)的函数图像是( )A. B.C. D.4、如图,在中,,,,分别在、上,将沿折叠,使点落在点处,若为的中点,则折痕的长为( )A. B.2 C.3 D.45、下列利用等式的性质,错误的是( )A.由,得到 B.由,得到C.由,得到 D.由,得到6、二次函数()的图象如图,给出下列四个结论:①;②;③;④对于任意不等于-1的m的值一定成立.其中结论正确的个数是( )A.1 B.2 C.3 D.47、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A.①②③ B.①②④ C.③④ D.①③④8、在实数范围内分解因式2x2﹣8x+5正确的是( )A.(x﹣)(x﹣) B.2(x﹣)(x﹣)C.(2x﹣)(2x﹣) D.(2x﹣4﹣)(2x﹣4+)9、下列说法正确的是( )A.不相交的两条直线叫做平行线B.过一点有且仅有一条直线与已知直线垂直C.平角是一条直线D.过同一平面内三点中任意两点,只能画出3条直线10、已知有理数在数轴上的位置如图所示,且,则代数式的值为( ).A. B.0 C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,,,,蚂蚁甲从点A出发,以1.5cm/s的速度沿着三角形的边按的方向行走,甲出发1s后蚂蚁乙从点A出发,以2cm/s的速度沿着三角形的边按的方向行走,那么甲出发________s后,甲乙第一次相距2cm.2、已知,,则代数式的值为____________.3、已知射线,在射线上截取OC=10cm,在射线上截取CD=6cm,如果点、点分别是线段、的中点,那么线段的长等于_______cm.4、如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,将△ADE沿直线DE翻折后与△FDE重合,DF、EF分别与边BC交于点M、N,如果DE=8,,那么MN的长是_____.5、如图,点O是的AB边上一点,,以OB长为半径作,与AC相切于点D.若,,则的半径长为______.三、解答题(5小题,每小题10分,共计50分)1、如图△ABC中,∠B=60°,∠BAC与∠ACB的角平分线AD、CE交于O.求证:AC=AE+DC.2、敕勒川,阴山下,天似穹庐,笼盖四野.天苍苍,野茫茫,风吹草地见牛羊,河套地区地势平坦、土地肥沃,适合大规模农牧.现有一片草场,草匀速生长,如果放牧360只羊,4周可以将草全部吃完.如果放牧210只羊,9周才能将草全部吃完.(假设每只羊每周吃的草量相等)(1)求这片草场每周生长的草量和牧民进驻前原有草量的比;(2)如果牧民准备在这片草场放牧8周,那么最多可以放牧多少只羊?3、如图1,点A、O、B依次在直线MN上,如图2,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,当其中一条射线回到起始位置时,运动停止,直线MN保持不动,设旋转时间为ts.(1)当t=3时,∠AOB= ;(2)在运动过程中,当射线OB与射线OA垂直时,求t的值;(3)在旋转过程中,是否存在这样的t,使得射线OB、射线OA和射线OM,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分?如果存在,直接写出答案;如果不存在,请说明理由.4、计算:(1)(2)5、如图,D、E分别是AC、AB上的点,△ADE∽△ABC,且DE=8,BC=24,CD=18,AD=6,求AE、BE的长. -参考答案-一、单选题1、B【分析】第一次降价后价格为,第二次降价后价格为整理即可.【详解】解:第一次降价后价格为第二次降价后价格为故选B.【点睛】本题考查了一元二次方程的应用.解题的关键在于明确每次降价前的价格.2、D【分析】根据一元二次方程的定义逐个判断即可.只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.【详解】解:A.是二元二次方程,不是一元二次方程,故本选项不符合题意;B.是分式方程,故本选项不符合题意;C.不是方程,故本选项不符合题意;D.是一元二次方程,故本选项符合题意;故选:D.【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键.3、B【分析】直接根据题意得出函数关系式,进而得出函数图象.【详解】解:由题意可得:t=,是反比例函数,故只有选项B符合题意.故选:B.【点睛】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.4、B【分析】由折叠的特点可知,,又,则由同位角相等两直线平行易证,故,又为的中点可得,由相似的性质可得求解即可.【详解】解:沿折叠,使点落在点处,,,又∵,∴,∴,,又为的中点,AE=AE'∴,,即,.故选:B.【点睛】本题考查折叠的性质,相似三角形的判定和性质,掌握“A”字形三角形相似的判定和性质为解题关键.5、B【分析】根据等式的性质逐项分析即可.【详解】A.由,两边都加1,得到,正确;B.由,当c≠0时,两边除以c,得到,故不正确;C.由,两边乘以c,得到,正确;D.由,两边乘以2,得到,正确;故选B.【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.6、C【分析】由抛物线与x轴有两个交点得到b2﹣4ac>0,可判断①;根据对称轴是x=﹣1,可得x=﹣2、0时,y的值相等,所以4a﹣2b+c>0,可判断③;根据1,得出b=2a,再根据a+b+c<0,可得b+b+c<0,所以3b+2c<0,可判断②;x=﹣1时该二次函数取得最大值,据此可判断④.【详解】解:∵图象与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正确;∵1,∴b=2a,∵a+b+c<0,∴b+b+c<0,∴3b+2c<0,∴②正确;∵当x=﹣2时,y>0,∴4a﹣2b+c>0,∴4a+c>2b,③错误;∵由图象可知x=﹣1时该二次函数取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④正确∴正确的有①②④三个,故选:C.【点睛】本题考查二次函数图象与系数的关系,看懂图象,利用数形结合解题是关键.7、D【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【详解】解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;隧道长是:45×30-150=1200(米),故④正确.故选:D.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.8、B【分析】解出方程2x2-8x+5=0的根,从而可以得到答案.【详解】解:∵方程2x2-8x+5=0中,a=2,b=-8,c=5,∴Δ=(-8)2-4×2×5=64-40=24>0,∴x=,∴2x2-8x+5=2(x﹣)(x﹣),故选:B.【点睛】本题考查了解一元二次方程,实数范围内分解因式,求出一元二次方程的根是解题的关键.9、B【分析】根据平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质依次判断.【详解】解:同一平面内,不相交的两条直线叫做平行线,故选项A错误;过一点有且仅有一条直线与已知直线垂直,故选项B正确;平角是角的两边在同一直线上的角,故选项C错误;过同一平面内三点中任意两点,能画出1条或3条直线故选项D错误;故选:B.【点睛】此题考查语句的正确性,正确掌握平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质是解题的关键.10、C【分析】首先根据数轴的信息判断出有理数的大小关系,然后确定各绝对值中代数式的符号,即可根据绝对值的性质化简求解.【详解】解:由图可知:,∴,,,,∴,故选:C.【点睛】本题考查数轴与有理数,以及化简绝对值,整式的加减运算等,理解数轴上表示的有理数的性质,掌握化简绝对值的方法以及整式的加减运算法则是解题关键.二、填空题1、4【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案.【详解】解:根据题意,∵,,,∴周长为:(cm),∵甲乙第一次相距2cm,则甲乙没有相遇,设甲行走的时间为t,则乙行走的时间为,∴,解得:;∴甲出发4秒后,甲乙第一次相距2cm.故答案为:4.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练掌握题意,正确的列出方程.2、-16.5【分析】先把待求的式子变形,再整体代值即可得出结论.【详解】解:,∵,,∴原式=3×(-5)-×(-3)=-15-1.5=-16.5.故答案为:-16.5.【点睛】本题考查了整式的加减-化简求值,利用整体代入的思想是解此题的关键.3、2【分析】根据OC、CD和中点A、B求出AC和BC,利用AB=AC-BC即可.【详解】解:如图所示,,,点、点分别是线段、的中点,,,.故答案为:2.【点睛】本题考查线段的和差计算,以及线段的中点,能准确画出对应的图形是解题的关键.4、4【分析】先根据折叠的性质得DA=DF,∠ADE=∠FDE,再根据平行线的性质和等量代换得到∠B=∠BMD,则DB=DM,接着利用比例的性质得到FM=DM,然后证明△FMN∽△FDE,从而利用相似比可计算出MN的长.【详解】解:∵△ADE沿直线DE翻折后与△FDE重合,∴DA=DF,∠ADE=∠FDE,∵DE∥BC,∴∠ADE=∠B,∠FDE=∠BMD,∴∠B=∠BMD,∴DB=DM,∵= ,∴=2,∴=2,∴FM=DM,∵MN∥DE,∴△FMN∽△FDE,∴== ,∴MN=DE=×8=4.故答案为:4【点睛】本题主要考查了相似三角形的判定和性质,平行线分线段成比例,图形的折叠,熟练掌握相似三角形的判定和性质,平行线分线段成比例,图形的折叠性质是解题的关键.5、##【分析】在Rt△ABC中,利用正弦函数求得AB的长,再在Rt△AOD中,利用正弦函数得到关于r的方程,求解即可.【详解】解:在Rt△ABC中,BC=4,sinA=,∴=,即=,∴AB=5,连接OD,∵AC是⊙O的切线,∴OD⊥AC,设⊙O的半径为r,则OD= OB=r,∴AO=5- r,在Rt△AOD中,sinA=,∴=,即=,∴r=.经检验r=是方程的解,∴⊙O的半径长为.故答案为:.【点睛】本题考查了切线的性质,正弦函数,解题的关键是掌握切线的性质、解直角三角形等知识点.三、解答题1、见解析【分析】在AC上截取CF=CD,由角平分线的性质和三角形内角和定理可求∠AOC=120°,∠DOC=∠AOE=60°,由“SAS”可证△CDO≌△CFO,可得∠COF=∠COD=60°,由“ASA”可证△AOF≌△AOE,可得AE=AF,即可得结论.【详解】解:证明:如图,在AC上截取CF=CD,∵∠B=60°,∴∠BAC+∠BCA=120°,∵∠BAC、∠BCA的角平分线AD、CE相交于O,∴∠BAD=∠OAC=∠BAC,∠DCE=∠OCA=∠BCA,∴∠OAC+∠OCA=(∠BAC+∠BCA)=60°,∴∠AOC=120°,∠DOC=∠AOE=60°,∵CD=CF,∠OCA=∠DCO,CO=CO,∴△CDO≌△CFO(SAS),∴∠COF=∠COD=60°,∴∠AOF=∠EOA=60°,且AO=AO,∠BAD=∠DAC,∴△AOF≌△AOE(ASA),∴AE=AF,∴AC=AF+FC=AE+CD.【点睛】本题考查了全等三角形的判定与性质,添加恰当辅助线构造全等三角形是本题的关键.2、(1)这片草场每周生长的草量和牧民进驻前原有草量的比为(2)最多可以放牧225只羊【分析】(1)设每只羊每周吃的草量为1份,这片草场牧民进驻前原有草量份,这片草场每周生长的草量为份,根据等量关系列出方程组即可;(2)设可以放牧只羊,列出一元一次不等式,即可求解.(1)解:设每只羊每周吃的草量为1份,这片草场牧民进驻前原有草量份,这片草场每周生长的草量为份,依题意得:,解得:,.答:这片草场每周生长的草量和牧民进驻前原有草量的比为.(2)设可以放牧只羊,依题意得:,解得:.答:最多可以放牧225只羊.【点睛】本题主要考查二元一次方程组以及一元一次不等式的实际应用,找出数量关系,列出方程组和不等式是解题的关键.3、(1)150°(2)9或27或45;(3)t为、、、、【分析】(1)求出∠AOM及∠BON的度数可得答案;(2)分两种情况:①当时,②当时,根据OA与OB重合前,OA与OB重合后,列方程求解; (3)射线OB、射线OM、射线OA中,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分有以下九种情况:①OA分∠BOM为2:3时,②OA分∠BOM为3:2时,③OB分∠AOM为2:3时,④OB分∠AOM为3:2时,⑤OM分∠AOB为2:3时,⑥ OB分∠AOM为2:3时,⑦OB分∠AOM为3:2时,⑧ OA分∠BOM为3:2时,⑨ OA分∠BOM为2:3时,列方程求解并讨论是否符合题意.(1)解:当t=3时,∠AOM=12°,∠BON=18°,∴∠AOB=180°-∠AOM-∠BON=150°,故答案为:150°;(2)解:分两种情况:①当时,当OA与OB重合前,,得t=9; 当OA与OB重合后,,得t=27;②当时,当OA与OB重合前,,得t=45; 当OA与OB重合后,,得t=63(舍去);故t的值为9或27或45;(3)解:射线OB、射线OM、射线OA中,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分有以下九种情况:①OA分∠BOM为2:3时,∴4t:(180-4t-6t)=2:3,解得:t=;②OA分∠BOM为3:2时,∴4t:(180-4t-6t)=3:2,解得:t=;③OB分∠AOM为2:3时,∵,∴,得t=;④OB分∠AOM为3:2时,∴,得t=;⑤OM分∠AOB为2:3时,∴,得t=54,此时>180°,故舍去;⑥ OB分∠AOM为2:3时,∴,得,此时,故舍去;⑦OB分∠AOM为3:2时,∴,得, 此时,故舍去;⑧ OA分∠BOM为3:2时,∴,得, ⑨ OA分∠BOM为2:3时,∴,得t=67.5(舍去)综上,当t的值分别为、、、、时,射线OB、射线OM、射线OA中,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分.【点睛】此题考查了角的计算,角的旋转,几何图形中角度的度数比,列一元一次方程,正确画出图形求角度值是解题的关键.4、(1)6(2)3x-25【分析】(1)根据负指数,零次幂,绝对值的性质,可得答案;(2)利用平方差公式计算即可.(1)原式=2+1+3=6;(2)原式=.【点睛】本题考查了实数的运算及整式的混合运算,掌握负指数,零次幂,绝对值的性质,平方差公式是解题关键.5、AE=8,BE=10.【分析】由△ADE∽△ABC,且DE=8,BC=24,CD=18,AD=6,根据相似三角形的对应边成比例,即可求得答案.【详解】解:∵△ADE∽△ABC,∴,∵DE=8,BC=24,CD=18,AD=6,∴AC=AD+CD=24,∴AE=8,AB=18,∴BE=AB-AE=10.【点睛】本题考查了相似三角形的性质.注意掌握相似三角形的对应边成比例定理的应用是解此题的关键.
相关试卷
这是一份【高频真题解析】2022年北京市海淀区中考数学三年高频真题汇总 卷(Ⅰ)(含答案及详解),共28页。
这是一份【难点解析】2022年北京市通州区中考数学三年高频真题汇总 卷(Ⅲ)(含详解),共24页。试卷主要包含了下列说法中,正确的有,已知和是同类项,那么的值是,观察下列图形等内容,欢迎下载使用。
这是一份【历年真题】中考数学三年高频真题汇总卷(含答案详解),共25页。试卷主要包含了抛物线的顶点坐标是,如图,在中,,,则的值为,下列图形是中心对称图形的是.等内容,欢迎下载使用。