2019年中考数学总复习第一板块基础知识过关第12课时二次函数知能优化训练新人教版20190403155
展开
这是一份2019年中考数学总复习第一板块基础知识过关第12课时二次函数知能优化训练新人教版20190403155,共3页。
第12课时 二次函数知能优化训练中考回顾1.(2018山东潍坊中考)已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为( )A.3或6 B.1或6C.1或3 D.4或6答案B2.(2018山东青岛中考)已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是( )答案A3.(2018甘肃张掖中考)如图,二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象与x轴的一个交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当-1<x<3时,y>0,其中正确的是( )A.①②④ B.①②⑤C.②③④ D.③④⑤答案A4.(2018广东广州中考)已知二次函数y=x2,当x>0时,y随x的增大而 (填“增大”或“减小”). 答案增大5.(2018浙江金华中考)如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数解析式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.解(1)设抛物线的解析式为y=ax(x-10).∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得-16a=4,解得a=-,∴抛物线的函数解析式为y=-x2+x.(2)由抛物线的对称性得BE=OA=t,∴AB=10-2t.当x=t时,AD=-t2+t,∴矩形ABCD的周长=2(AB+AD)=2=-t2+t+20=-(t-1)2+∵-<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为(3)如图,当t=2时,点A,B,C,D的坐标分别为(2,0),(8,0),(8,4),(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2).当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G,H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分;当点G,H分别落在线段AB,DC上时,且直线GH过点P时,直线GH必平分矩形ABCD的面积.∵AB∥CD,∴线段OD平移后得到线段GH,∴线段OD的中点Q平移后的对应点是P.在△OBD中,PQ是中位线,∴PQ=OB=4,∴抛物线向右平移的距离是4个单位长度.模拟预测1.已知二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是( ) A.k<3 B.k<3,且k≠0C.k≤3 D.k≤3,且k≠0答案D2.若点M(-2,y1),N(-1,y2),P(8,y3)在抛物线y=-x2+2x上,则下列结论正确的是( )A.y1<y2<y3 B.y2<y1<y3C.y3<y1<y2 D.y1<y3<y2答案C3.已知一元二次方程ax2+bx+c=0(a>0)的两个实数根x1,x2满足x1+x2=4和x1·x2=3,则二次函数y=ax2+bx+c(a>0)的图象有可能是( )答案C4.小明在用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x…-2-1012…y…-6-4-2-2-2…根据表格中的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y= . 答案-45.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为 . 答案k=0或k=-16.抛物线y=-x2+bx+c的图象如图,若将其向左平移2个单位长度,再向下平移3个单位长度,则平移后的解析式为 . 答案y=-x2-2x7.如图①,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1,L2互称为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有很多条.(1)如图②,已知抛物线L3:y=2x2-8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的对称点D的坐标;(2)请求出以点D为顶点的L3的“友好”抛物线L4的解析式,并指出L3与L4中y同时随x增大而增大的自变量的取值范围;(3)若抛物线y=a1(x-m)2+n的任意一条“友好”抛物线的解析式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由.解(1)∵抛物线L3:y=2x2-8x+4,∴y=2(x-2)2-4.∴顶点为(2,-4),对称轴为x=2,设x=0,则y=4,∴C(0,4).∴点C关于该抛物线对称轴对称的对称点D的坐标为(4,4).(2)∵以点D(4,4)为顶点的L3的友好抛物线L4还过点(2,-4),∴L4的解析式为y=-2(x-4)2+4.∴L3与L4中y同时随x增大而增大的自变量的取值范围是2≤x≤4.(3)a1=-a2,理由如下:∵抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,∴可以列出两个方程由①+②,得(a1+a2)(m-h)2=0,∴a1=-a2.
相关试卷
这是一份2019年中考数学总复习第一板块基础知识过关第24课时投影与视图知能优化训练新人教版20190403129,共4页。试卷主要包含了如图所示的几何体的主视图是,8m,DG=CA=30m等内容,欢迎下载使用。
这是一份2019年中考数学总复习第一板块基础知识过关第30课时概率知能优化训练新人教版20190403115,共3页。
这是一份2019年中考数学总复习第一板块基础知识过关第23课时尺规作图知能优化训练新人教版20190403131,共4页。试卷主要包含了尺规作图等内容,欢迎下载使用。