专题14 概率与统计(选择题、填空题) 三年高考(2019-2021)数学(文)试题分项汇编
展开
这是一份专题14 概率与统计(选择题、填空题) 三年高考(2019-2021)数学(文)试题分项汇编,文件包含专题14概率与统计选择题填空题教师版三年高考2019-2021数学文试题分项汇编doc、专题14概率与统计选择题填空题学生版三年高考2019-2021数学文试题分项汇编doc等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
专题14 概率与统计(选择题、填空题)1.【2021年全国高考甲卷数学(文)】将3个1和2个0随机排成一行,则2个0不相邻的概率为( )A.0.3 B.0.5 C.0.6 D.0.8【答案】C【分析】利用古典概型的概率公式可求概率.【详解】解:将3个1和2个0随机排成一行,可以是:,共10种排法,其中2个0不相邻的排列方法为:,共6种方法,故2个0不相邻的概率为,故选:C.2.【2021年全国高考乙卷数学(文)】在区间随机取1个数,则取到的数小于的概率为( )A. B. C. D.【答案】B【分析】根据几何概型的概率公式即可求出.【详解】设“区间随机取1个数”,对应集合为: ,区间长度为,“取到的数小于”, 对应集合为:,区间长度为,所以.故选:B.【点睛】本题解题关键是明确事件“取到的数小于”对应的范围,再根据几何概型的概率公式即可准确求出.3.【2021年全国新高考Ⅰ卷数学】有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A.甲与丙相互独立 B.甲与丁相互独立C.乙与丙相互独立 D.丙与丁相互独立【答案】B【分析】根据独立事件概率关系逐一判断【详解】 ,故选:B【点睛】判断事件是否独立,先计算对应概率,再判断是否成立4.【2021年全国新高考II卷数学】某物理量的测量结果服从正态分布,下列结论中不正确的是( )A.越小,该物理量在一次测量中在的概率越大B.越小,该物理量在一次测量中大于10的概率为0.5C.越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D.越小,该物理量在一次测量中落在与落在的概率相等【答案】D【分析】由正态分布密度曲线的特征逐项判断即可得解.【详解】对于A,为数据的方差,所以越小,数据在附近越集中,所以测量结果落在内的概率越大,故A正确;对于B,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为,故B正确;对于C,由正态分布密度曲线的对称性可知该物理量一次测量结果大于的概率与小于的概率相等,故C正确;对于D,因为该物理量一次测量结果落在的概率与落在的概率不同,所以一次测量结果落在的概率与落在的概率不同,故D错误.故选:D.5.【2021年全国高考甲卷数学(文)】为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是( )A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为,故A正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为,故B正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为,故D正确;该地农户家庭年收入的平均值的估计值为(万元),超过6.5万元,故C错误.综上,给出结论中不正确的是C.故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于.6.【2021年全国新高考Ⅰ卷数学】有一组样本数据,,…,,由这组数据得到新样本数据,,…,,其中(为非零常数,则( )A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样数据的样本极差相同【答案】CD【分析】A、C利用两组数据的线性关系有、,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B、D的正误.【详解】A:且,故平均数不相同,错误;B:若第一组中位数为,则第二组的中位数为,显然不相同,错误;C:,故方差相同,正确;D:由极差的定义知:若第一组的极差为,则第二组的极差为,故极差相同,正确;故选:CD7.【2021年全国新高考II卷数学】下列统计量中,能度量样本的离散程度的是( )A.样本的标准差 B.样本的中位数C.样本的极差 D.样本的平均数【答案】AC【分析】考查所给的选项哪些是考查数据的离散程度,哪些是考查数据的集中趋势即可确定正确选项.【详解】由标准差的定义可知,标准差考查的是数据的离散程度;由中位数的定义可知,中位数考查的是数据的集中趋势;由极差的定义可知,极差考查的是数据的离散程度;由平均数的定义可知,平均数考查的是数据的集中趋势;故选:AC.8.【2021年天津高考数学】从某网络平台推荐的影视作品中抽取部,统计其评分分数据,将所得个评分数据分为组:、、、,并整理得到如下的费率分布直方图,则评分在区间内的影视作品数量是( )A. B. C. D.【答案】D【分析】利用频率分布直方图可计算出评分在区间内的影视作品数量.【详解】由频率分布直方图可知,评分在区间内的影视作品数量为.故选:D.9.【2020年高考全国Ⅰ卷文数】设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为A. B.C. D.【答案】A【解析】如图,从5个点中任取3个有:,,共种不同取法,3点共线只有与共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为.故选A.【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题.10.【2020年高考全国Ⅰ卷文数】某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是A. B.C. D.【答案】D【解析】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率和温度的回归方程类型的是.故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.11.【2020年高考全国Ⅲ卷文数】设一组样本数据x1,x2,…,xn的方差为0.01,则数据10x1,10x2,…,10xn的方差为A.0.01 B.0.1 C.1 D.10【答案】C【解析】因为数据的方差是数据的方差的倍,所以所求数据方差为故选:C【点睛】本题考查方差,考查基本分析求解能力,属基础题.12.【2020年新高考全国Ⅰ卷】某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是A.62% B.56%C.46% D.42%【答案】C【解析】记“该中学学生喜欢足球”为事件,“该中学学生喜欢游泳”为事件,则“该中学学生喜欢足球或游泳”为事件,“该中学学生既喜欢足球又喜欢游泳”为事件,则,,,所以所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为.故选:C.【点睛】本题考查了积事件的概率公式,属于基础题.13.【2019年高考全国Ⅲ卷文数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6C.0.7 D.0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C.【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.14.【2019年高考全国Ⅰ卷文数】某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生 B.200号学生C.616号学生 D.815号学生【答案】C【解析】由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列,公差,所以,若,解得,不合题意;若,解得,不合题意;若,则,符合题意;若,则,不合题意.故选C.15.【2019年高考全国Ⅱ卷文数】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A. B.C. D.【答案】B【分析】首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式即可求解.【解析】设其中做过测试的3只兔子为,剩余的2只为,则从这5只中任取3只的所有取法有,,共10种.其中恰有2只做过测试的取法有,共6种,所以恰有2只做过测试的概率为,故选B.【名师点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.16.【2021年天津高考数学】甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为和,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为____________,3次活动中,甲至少获胜2次的概率为______________.【答案】 【分析】根据甲猜对乙没有才对可求出一次活动中,甲获胜的概率;在3次活动中,甲至少获胜2次分为甲获胜2次和3次都获胜求解.【详解】由题可得一次活动中,甲获胜的概率为;则在3次活动中,甲至少获胜2次的概率为.故答案为:;.17.【2021年浙江省高考数学】袋中有4个红球m个黄球,n个绿球.现从中任取两个球,记取出的红球数为,若取出的两个球都是红球的概率为,一红一黄的概率为,则___________,___________.【答案】1 【分析】根据古典概型的概率公式即可列式求得的值,再根据随机变量的分布列即可求出.【详解】,所以,, 所以, 则.由于.故答案为:1;.18.【2020年高考江苏】已知一组数据的平均数为4,则的值是 ▲ .【答案】2【解析】∵数据的平均数为4∴,即.故答案为:2.【点睛】本题主要考查平均数的计算和应用,比较基础.19.【2020年高考江苏】将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.【答案】【解析】根据题意可得基本事件数总为个.点数和为5的基本事件有,,,共4个.∴出现向上的点数和为5的概率为.故答案为:.【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.20.【2020年高考天津】从一批零件中抽取80个,测量其直径(单位:),将所得数据分为9组:,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间内的个数为A.10 B.18 C.20 D.36【答案】B【解析】根据直方图,直径落在区间之间的零件频率为:,则区间内零件的个数为:.故选:B.【点睛】本题主要考查频率分布直方图的计算与实际应用,属于中等题.21.【2020年高考天津】已知甲、乙两球落入盒子的概率分别为和.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.【答案】 【解析】甲、乙两球落入盒子的概率分别为,且两球是否落入盒子互不影响,所以甲、乙都落入盒子概率为,甲、乙两球都不落入盒子的概率为,所以甲、乙两球至少有一个落入盒子的概率为.故答案为:;.【点睛】本题主要考查独立事件同时发生的概率,以及利用对立事件求概率,属于基础题.22.【2019年高考全国Ⅱ卷文数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________.【答案】【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为,其中高铁个数为,所以该站所有高铁平均正点率约为.【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.
相关试卷
这是一份高考数学真题分项汇编三年(2021-2023)(全国通用)专题14+概率与统计(选择题、填空题)(理),文件包含专题14概率与统计选择题填空题理全国通用解析版docx、专题14概率与统计选择题填空题理全国通用原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
这是一份专题15 概率与统计(解答题) 三年高考(2019-2021)数学(文)试题分项汇编,文件包含专题15概率与统计解答题教师版三年高考2019-2021数学文试题分项汇编doc、专题15概率与统计解答题学生版三年高考2019-2021数学文试题分项汇编doc等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
这是一份专题07 平面解析几何(选择题、填空题) 三年高考(2019-2021)数学(文)试题分项汇编,文件包含专题07平面解析几何选择题填空题教师版三年高考2019-2021数学文试题分项汇编doc、专题07平面解析几何选择题填空题学生版三年高考2019-2021数学文试题分项汇编doc等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。