所属成套资源:高考数学(理数)一轮复习检测卷 (学生版)
高考数学(理数)一轮复习检测卷:3.6《解三角形的综合应用》 (学生版)
展开
这是一份高考数学(理数)一轮复习检测卷:3.6《解三角形的综合应用》 (学生版),共5页。试卷主要包含了3万元,求表演台的最低造价.等内容,欢迎下载使用。
限时规范训练(限时练·夯基练·提能练)A级 基础夯实练1.如图所示,为了测量某湖泊两侧A,B间的距离,李宁同学首先选定了与A,B不共线的一点C(△ABC的角A,B,C所对的边分别记为a,b,c),然后给出了三种测量方案:①测量A,C,b;②测量a,b,C;③测量A,B,a.则一定能确定A,B间的距离的所有方案的序号为( )A.①② B.②③C.①③ D.①②③ 2.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是( )A.10海里 B.10海里C.20海里 D.20海里 3.一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100 m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是( )A.50 m B.100 mC.120 m D.150 m 4.如图,为了测量A,C两点间的距离,选取同一平面上B,D两点,测出四边形ABCD各边的长度(单位:km).AB=5,BC=8,CD=3,DA=5,且∠B与∠D互补,则AC的长为( )A.7 km B.8 kmC.9 km D.6 km 5.如图,某海上缉私小分队驾驶缉私艇以40 km/h的速度由A处出发,沿北偏东60°方向进行海上巡逻,当航行半小时到达B处时,发现北偏西45°方向有一艘船C,若船C位于A的北偏东30°方向上,则缉私艇所在的B处与船C的距离是( )A.5(+)km B.5(-)kmC.10(-)km D.10(+)km 6.如图,在四边形ABCD中,已知AD⊥CD,AD=10,AB=14,∠BDA=60°,∠BCD=135°,则BC的长为________. 7.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m. 8.沿海某四个城市A,B,C,D的位置如图所示,其中∠ABC=60°,∠BCD=135°,AB=80 n mile,BC=(40+30)n mile,CD=250 n mile,D位于A的北偏东75°方向.现在有一艘轮船从A出发以50 n mile/h的速度向D直线航行,60 min后,轮船由于天气原因收到指令改向城市C直线航行,收到指令时城市C对于轮船的方位角是南偏西θ,则sin θ=________. 9.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足a(sin A+sin C)+csin C=bsin(A+C).(1)求角B;(2)若b=6,sin C=,求△ABC的面积S. 10.在某海域A处正东方向相距80海里的B处有一艘客轮遇险,在原地等待救援.信息中心立即把消息告知在其南偏西30°,相距40海里的C处的救援船,救援船立即朝北偏东θ角的方向沿直线CB前往B处救援.(1)若救援船的航行速度为60海里/小时,求救援船到达客轮遇险位置的时间;(2)求tan θ的值. B级 能力提升练11.某人要作一个三角形,要求它的三条高的长度分别是、、,则此人将( )A.不能作出满足要求的三角形B.能作出一个锐角三角形C.能作出一个直角三角形 D.能作出一个钝角三角形 12.在△ABC中,角A,B,C所对的边分别为a,b,c,且2ccos B=2a+b,若△ABC的面积为c,则ab的最小值为( )A. B.C. D.313.如图所示,在海岛A上有一座海拔千米的山峰,山顶上设有一座观察站P,一艘轮船沿一固定方向匀速航行,上午10:00时,测得此船在岛北偏东20°且俯角为30°的B处,到10:10时,又测得该船在岛北偏西40°且俯角为60°的C处,则该船的航行速度为________km/h.14.已知函数f(x)=m·n,其中向量m=(sin ωx+cos ωx,cos ωx),n=(cos ωx-sin ωx,2sin ωx),ω>0,若f(x)的图象上相邻两个对称中心的距离大于等于π.(1)求ω的取值范围;(2)在△ABC中,a,b,c分别是角A,B,C的对边,a=,当ω最大时,f(A)=1,求△ABC的面积的最大值. 15.某学校的平面示意图如图中的五边形区域ABCDE,其中三角形区域ABE为生活区,四边形区域BCDE为教学区,AB,BC,CD,DE,EA,BE为学校的主要道路(不考虑宽度).∠BCD=∠CDE=,∠BAE=,DE=3BC=3CD= km.(1)求道路BE的长度;(2)求生活区△ABE面积的最大值. C级 素养加强练16.在一水域上建一个演艺广场.演艺广场由看台Ⅰ,看台Ⅱ,三角形水域ABC及矩形表演台BCDE四个部分构成(如图).看台Ⅰ,看台Ⅱ分别是以AB,AC为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的3倍;矩形表演台BCDE中,CD=10米;三角形水域ABC的面积为400平方米.设∠BAC=θ.(1)当θ=时,求BC的长;(2)若表演台每平方米的造价为0.3万元,求表演台的最低造价.
相关试卷
这是一份高考数学(理数)一轮复习检测卷:8.5《双曲线》 (学生版),共3页。试卷主要包含了当双曲线M,已知F是双曲线C,已知双曲线C,设F1,F2分别为双曲线C等内容,欢迎下载使用。
这是一份高考数学(理数)一轮复习检测卷:8.4《椭圆》 (学生版),共4页。试卷主要包含了已知椭圆C等内容,欢迎下载使用。
这是一份高考数学(理数)一轮复习检测卷:8.2《圆的方程》 (学生版),共2页。试卷主要包含了以线段AB,已知圆C,已知点P,圆C等内容,欢迎下载使用。