所属成套资源:高考数学(文数)一轮复习课时练习(教师版)
高考数学(文数)一轮复习课时练习:7.5《空间中的垂直关系》(教师版)
展开
这是一份高考数学(文数)一轮复习课时练习:7.5《空间中的垂直关系》(教师版),共8页。
课时规范练A组 基础对点练1.如图,在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,则四面体P-ABC中共有直角三角形个数为( )A.4 B.3C.2 D.1解析:由PA⊥平面ABC可得△PAC,△PAB是直角三角形,且PA⊥BC.又∠ABC=90°,即AB⊥BC,所以△PBC是直角三角形,且BC⊥平面PAB,又PB⊂平面PAB,所以BC⊥PB,即△PBC为直角三角形,故四面体P-ABC中共有4个直角三角形.答案:A2.设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是( )A.a⊥α,b∥β,α⊥β B.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥β D.a⊂α,b∥β,α⊥β解析:对于C项,由α∥β,a⊂α可得α∥β,又b⊥β,得a⊥b,故选C.答案:C3.设α,β,γ为不同的平面,m,n为不同的直线,则m⊥β的一个充分条件是( )A.α⊥β,α∩β=n,m⊥nB.α∩γ=m,α⊥γ,β⊥γC.α⊥β,β⊥γ,m⊥αD.n⊥α,n⊥β,m⊥α解析:A不对,m可能在平面β内,也可能与β平行;B,C不对,满足条件的m和β可能相交,也可能平行;D对,由n⊥α,n⊥β可知α∥β,结合m⊥α知m⊥β,故选D.答案:D4.设a,b,c是空间的三条直线,α,β是空间的两个平面,则下列命题中,逆命题不成立的是 ( )A.当c⊥α时,若c⊥β,则α∥βB.当b⊂α时,若b⊥β,则α⊥βC.当b⊂α,且c是a在α内的射影时,若b⊥c,则a⊥bD.当b⊂α,且c⊄α时,若c∥α,则b∥c解析:A的逆命题为:当c⊥α时,若α∥β,则c⊥β.由线面垂直的性质知c⊥β,故A正确;B的逆命题为:当b⊂α时,若α⊥β,则b⊥β,显然错误,故B错误;C的逆命题为:当b⊂α,且c是a在α内的射影时,若a⊥b,则b⊥c.由三垂线逆定理知b⊥c,故C正确;D的逆命题为:当b⊂α,且c⊄α时,若b∥c,则c∥α.由线面平行判定定理可得c∥α,故D正确。答案:B5.如图,O是正方体ABCDA1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是( )A.A1D B.AA1C.A1D1 D.A1C1解析:连接B1D1(图略),则A1C1⊥B1D1,根据正方体特征可得BB1⊥A1C1,故A1C1⊥平面BB1D1D,B1O⊂平面BB1D1D,所以B1O⊥A1C1.答案:D6.如图,在三棱锥DABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的有________(写出全部正确命题的序号).①平面ABC⊥平面ABD;②平面ABD⊥平面BCD;③平面ABC⊥平面BDE,且平面ACD⊥平面BDE;④平面ABC⊥平面ACD,且平面ACD⊥平面BDE.解析:由AB=CB,AD=CD知AC⊥DE,AC⊥BE,从而AC⊥平面BDE,所以平面ABC⊥平面BDE,且平面ACD⊥平面BDE,故③正确.答案:③7.如图,PA⊥⊙O所在平面,AB是⊙O的直径,C是⊙O上一点,AE⊥PC,AF⊥PB,给出下列结论:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中正确的结论有________.解析:①AE⊂平面PAC,BC⊥AC,BC⊥PA⇒AE⊥BC,故①正确;②AE⊥PC,AE⊥BC,PB⊂平面PBC⇒AE⊥PB,AE⊥PB,EF⊂平面AEF⇒EF⊥PB,故②正确;③AF⊥PB,若AF⊥BC⇒AF⊥平面PBC,则AF∥AE与已知矛盾,故③错误;由①可知④正确.答案:①②④8.如图所示,在四棱锥PABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)解析:如图,连接AC,BD,则AC⊥BD,∵PA⊥底面ABCD,∴PA⊥BD.又PA∩AC=A,∴BD⊥平面PAC,∴BD⊥PC,∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.而PC⊂平面PCD,∴平面MBD⊥平面PCD.答案:DM⊥PC(或BM⊥PC等)9.如图,四棱锥PABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.求证:(1)AP∥平面BEF;(2) BE⊥平面PAC.证明:(1)设AC∩BE=O,连接OF,EC,如图所示.由于E为AD的中点,AB=BC=AD,AD∥BC,所以AE∥BC,AE=AB=BC,因此四边形ABCE为菱形,所以O为AC的中点.又F为PC的中点,因此在△PAC中,可得AP∥OF.又OF⊂平面BEF,AP⊄平面BEF.所以AP∥平面BEF.(2)由题意知ED∥BC,ED=BC.所以四边形BCDE为平行四边形,因此BE∥CD.又AP⊥平面PCD,所以AP⊥CD,因此AP⊥BE.因为四边形ABCE为菱形,所以BE⊥AC.又AP∩AC=A,AP,AC⊂平面PAC,所以BE⊥平面PAC.10.已知四棱锥PABCD的底面ABCD是矩形,PD⊥底面ABCD,E为棱PD的中点.(1)证明:PB∥平面AEC;(2)若PD=AD=2,PB⊥ AC,求点P到平面AEC的距离.解析:(1)证明:如图,连接BD,交AC于点F,连接EF,∵底面ABCD为矩形,∴F为BD中点,又E为PD中点,∴EF∥PB,又PB⊄平面AEC,EF⊂平面AEC,∴PB∥平面AEC.(2)∵PD⊥平面ABCD,AC⊂平面ABCD,∴PD⊥AC,又PB⊥AC,PB∩PD=P,∴AC⊥平面PBD,∵BD⊂平面PBD,∴AC⊥BD,∴四边形ABCD为正方形.又E为PD的中点,∴P到平面AEC的距离等于D到平面AEC的距离,设D到平面AEC的距离为h,由题意可知AE=EC=,AC=2,S△AEC=×2×=,由VDAEC=VEADC得S△AEC·h=S△ADC·ED,解得h=,∴点P到平面AEC的距离为.B组 能力提升练1.如图,正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,D是EF与SG2的交点,现沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,则在四面体GSEF中必有( )A.SD⊥平面EFG B.SE⊥GFC.EF⊥平面SEG D.SE⊥SF解析:对于A,设正方形的棱长为2a,则DG=a,SD=a,∵SG2≠DG2+SD2,∴SD与DG不垂直,∴SD不垂直于平面EFG,故A错误;对于B,∵在折叠的过程中,始终有SG3⊥G3F,EG2⊥G2F,∴SG⊥GF,EG⊥GF,SG∩EG=G,∴GF⊥平面SEG,∵SE⊂平面SEG,∴SE⊥GF,故B正确;对于C,△EFG中,∵EG⊥GF,∴EF不与GE垂直,∴EF不垂直于平面SEG,故C错误;对于D,由正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,得∠ESF<∠G1SG3=90°,∴SE与SF不垂直,故D错误.故选B.答案:B2.若m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是( )A.若m⊂β,α⊥β,则m⊥αB.若α∩γ=m,β∩γ=n,m∥n,则α∥βC.若m⊥β,m∥α,则α⊥βD.若α⊥γ,α⊥β,则β⊥γ解析:A中m与α的位置关系不确定,故错误;B中α,β可能平行或相交,故错误;由面面垂直的判定定理可知C正确;D中β,γ平行或相交,故错误.答案:C3.如图,直三棱柱ABCA1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E.要使AB1⊥平面C1DF,则线段B1F的长为( )A. B.1C. D.2解析:设B1F=x,因为AB1⊥平面C1DF,DF⊂平面C1DF,所以AB1⊥DF.由已知可得A1B1=,设Rt△AA1B1斜边AB1上的高为h,则DE=h.又2×=h,所以h=,DE=.在Rt△DB1E中,B1E= =.由面积相等得× =x,得x=.答案:A4.如图,三棱柱ABCA1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABCA1B1C1的高.解析:(1)证明:如图,连接BC1,则O为B1C与BC1的交点.因为侧面BB1C1C为菱形,所以B1C⊥BC1.又AO⊥平面BB1C1C,所以B1C⊥AO,故B1C⊥平面ABO.由于AB⊂平面ABO,故B1C⊥AB.(2)如图,作OD⊥BC,垂足为D,连接AD.作OH⊥AD,垂足为H.由于BC⊥AO,BC⊥OD,故BC⊥平面AOD,所以OH⊥BC.又OH⊥AD,所以OH⊥平面ABC.因为∠CBB1=60°,所以△CBB1为等边三角形,又BC=1,所以OD=.由于AC⊥AB1,所以OA=B1C=.由OH·AD=OD·OA,且AD==,得OH=.又O为B1C的中点,所以点B1到平面ABC的距离为.故三棱柱ABCA1B1C1的高为.5.如图,在四棱锥EABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=3AB.(1)求证:平面ACE⊥平面CDE;(2)在线段DE上是否存在一点F,使AF∥平面BCE?若存在,求出的值;若不存在,说明理由.解析:(1)证明:因为CD⊥平面ADE,AE⊂平面ADE,所以CD⊥AE.又AE⊥DE,CD∩DE=D,所以AE⊥平面CDE,因为AE⊂平面ACE,所以平面ACE⊥平面CDE.(2)在线段DE上存在一点F,且=,使AF∥平面BCE.设F为线段DE上一点,且=.过点F作FM∥CD交CE于点M,连接BM,AF,则FM=CD.因为CD⊥平面ADE,AB⊥平面ADE,所以CD∥AB.又FM∥CD,所以FM∥AB.因为CD=3AB,所以FM=AB.所以四边形ABMF是平行四边形,所以AF∥BM.又AF⊄平面BCE,BM⊂平面BCE,所以AF∥平面BCE.6.如图,四棱锥PABCD中,底面ABCD是菱形,PA=PD,∠BAD=60°,E是AD的中点,点Q在侧棱PC上.(1)求证:AD⊥平面PBE;(2)若Q是PC的中点,求证:PA∥平面BDQ;(3)若VPBCDE=2VQABCD,试求的值.解析:(1)证明:由E是AD的中点,PA=PD可得AD⊥PE.又底面ABCD是菱形,∠BAD=60°,所以AB=BD,又E是AD的中点,所以AD⊥BE,又PE∩BE=E,所以AD⊥平面PBE.(2)证明:连接AC,交BD于点O,连接OQ.因为O是AC的中点,Q是PC的中点,所以OQ∥PA,又PA⊄平面BDQ,OQ⊂平面BDQ,所以PA∥平面BDQ.(3)设四棱锥PBCDE,QABCD的高分别为h1,h2.所以VPBCDE=S四边形BCDEh1,VQABCD=S四边形ABCDh2.又VPBCDE=2VQABCD,且S四边形BCDE=S四边形ABCD,所以==.
相关试卷
这是一份2023年高考数学(文数)一轮复习创新思维课时练7.4《空间中的垂直关系》(2份,教师版+原卷版),文件包含2023年高考数学文数一轮复习创新思维课时练74《空间中的垂直关系》教师版doc、2023年高考数学文数一轮复习创新思维课时练74《空间中的垂直关系》原卷版doc等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。
这是一份高考数学(文数)一轮复习创新思维课时练7.4《空间中的垂直关系》(教师版),共10页。
这是一份高考数学(文数)一轮复习创新思维课时练7.3《空间中的平行关系》(教师版),共11页。