所属成套资源:高考数学(文数)一轮复习课时练习(教师版)
高考数学(文数)一轮复习课时练习:10.4《变量间的相关关系与统计案例》(教师版)
展开
这是一份高考数学(文数)一轮复习课时练习:10.4《变量间的相关关系与统计案例》(教师版),共7页。试卷主要包含了已知x,y的取值如表所示等内容,欢迎下载使用。
课时规范练A组 基础对点练1.已知x,y的取值如表所示:x234y645如果y与x线性相关,且线性回归方程为=x+,则的值为( )A.- B.C.- D.解析:计算得=3,=5,代入到=x+中,得=-.故选A.答案:A2.四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且=2.347x-6.423;②y与x负相关且=-3.476x+5.648;③y与x正相关且=5.437x+8.493;④y与x正相关且=-4.326x-4.578.其中一定不正确的结论的序号是( )A.①② B.②③C.③④ D.①④解析:=x+,当b>0时,为正相关,b<0为负相关,故①④错误.答案:D3.在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为( )A.-1 B.0C. D.1解析:所有点均在直线上,则样本相关系数最大即为1,故选D.答案:D4.已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是( )A.=0.4x+2.3 B.=2x-2.4C.=-2x+9.5 D.=-0.3x+4.4解析:依题意知,相应的回归直线的斜率应为正,排除C、D.且直线必过点(3,3.5),代入A、B得A正确.答案:A5.经调查某地若干户家庭的年收入x(万元)和年饮食支出y(万元)具有线性相关关系,并得到y关于x的回归直线方程:=0.245x+0.321,由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.解析:x变为x+1,=0.245(x+1)+0.321=0.245x+0.321+0.245,因此家庭年收入每增加1万元,年饮食支出平均增加0.245万元.答案:0.2456.某炼钢厂废品率x(%)与成本y(元/吨)的线性回归方程为=105.492+42.569x.当成本控制在176.5元/吨时,可以预计生产的1 000吨钢中,约有________吨钢是废品(结果保留两位小数).解析:因为176.5=105.492+42.569x,解得x≈1.668,即当成本控制在176.5元/吨时,废品率约为1.668%,所以生产的1 000吨钢中,约有1 000×1.668%=16.68吨是废品.答案:16.687.(2018·合肥模拟)某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(x个月)和市场占有率(y%)的几组相关对应数据:x12345y0.020.050.10.150.18(1)根据上表中的数据,用最小二乘法求出y关于x的线性回归方程;(2)根据上述回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个月,该款旗舰机型市场占有率能超过0.5%(精确到月).附:=,=-.解析:(1)由题意知=3,=0.1,iyi=1.92,=55,所以===0.042,=-=0.1-0.042×3=-0.026,所以线性回归方程为=0.042x-0.026.(2)由(1)中的回归方程可知,上市时间与市场占有率正相关,即上市时间每增加1个月,市场占有率约增加0.042个百分点.由=0.042x-0.026>0.5,解得x≥13,故预计上市13个月时,该款旗舰机型市场占有率能超过0.5%.8.某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩的平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.分数段[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]男39181569女64510132(1)估计男、女生各自的平均分(同一组数据用该组区间中点值作代表),从计算结果看,数学成绩与性别是否有关;(2)规定80分以上为优分(含80分),请你根据已知条件作出2×2列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”. 优分非优分总计男生 女生 总计 100附表及公式P(K2≥k0)0.1000.0500.0100.001k02.7063.8416.63510.828K2=.解析:(1)男=45×0.05+55×0.15+65×0.3+75×0.25+85×0.1+95×0.15=71.5,女=45×0. 15+55×0.1+65×0.125+75×0.25+85×0.325+95×0.05=71.5,从男、女生各自的平均分来看,并不能判断数学成绩与性别有关.(2)由频数分布表可知:在抽取的100名学生中,“男生组”中的优分有15人,“女生组”中的优分有15人,据此可得2×2列联表如下: 优分非优分总计男生154560女生152540总计3070100可得K2=≈1.79,因为1.79<2.706,所以没有90%以上的把握认为“数学成绩与性别有关”.B组 能力提升练1.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x/万元8.28.610.011.311.9支出y/万元6.27.58.08.59.8根据上表可得回归直线方程=x+,其中=0.76,=-.据此估计,该社区一户年收入为15万元家庭的年支出为( )A.11.4万元 B.11.8万元C.12.0万元 D.12.2万元解析:∵=10.0,=8.0,=0.76,∴=8-0.76×10=0.4,∴回归方程为=0.76x+0.4,把x=15代入上式得,=0.76×15+0.4=11.8(万元),故选B.答案:B2.根据如下样本数据:x34567y4.0a-5.4-0.50.5b-0.6得到的回归方程为=x+.若样本点的中心为(5,0.9),则当x每增加1个单位时,y( )A.增加1.4个单位 B.减少1.4个单位C.增加7.9个单位 D.减少7.9个单位解析:依题意得,==0.9,故a+b=6.5①;又样本点的中心为(5,0.9),故0.9=5b+a②,联立①②,解得b=-1.4,a=7.9,即=-1.4x+7.9,可知当x每增加1个单位时,y减少1.4个单位,故选B.答案:B3.某考察团对全国10个城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查,y与x具有相关关系,回归方程=0.66x+1.562.若某城市居民人均消费水平为7.675(千元),估计该城市人均消费占人均工资收入的百分比约为________.解析:由=0.66x+1.562知,当y=7.675时,x=,故所求百分比为=≈83%.答案:83% 4.为了研究某种细菌在特定环境下随时间变化的繁殖规律,得到了下表中的实验数据,计算得回归直线方程为=0.85x-0.25.由以上信息,可得表中c的值为________.天数x34567繁殖数量y(千个)2.5344.5c解析:==5,==,代入回归直线方程得=0.85×5-0.25,解得c=6.答案:65.为了研究男羽毛球运动员的身高x(单位:cm)与体重y(单位:kg)的关系,通过随机抽样的方法,抽取5名运动员测得他们的身高与体重关系如下表:身高(x)172174176178180体重(y)7473767577(1)从这5个人中随机地抽取2个人,求这2个人体重之差的绝对值不小于2 kg的概率;(2)求回归直线方程=x+.解析:(1)从这5个人中随机地抽取2个人的体重的基本事件有(74,73),(74,76),(74,75),(74,77);(73,76),(73,75),(73,77);(76,75),(76,77);(75,77).满足条件的有(74,76),(74,77),(73,76),(73,75),(73,77),(75,77)6种情况,故2个人体重之差的绝对值不小于2 kg的概率为=.(2)=176,=75,xi--4-2024yi--1-2102===0.4,=-=4.6,∴=0.4x+4.6. 6.为了解某地区观众对某大型综艺节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众观看该节目的场数与所对应的人数的表格:场数91011121314人数10182225205将收看该节目场数不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.(1)根据已知条件完成如下2×2列联表,并判断我们能否有95%的把握认为是否为“歌迷”与性别有关? 非歌迷歌迷总计男 女 总计 (2)将收看该节目所有场数(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.注:P(K2≥k0)0.100.05k02.7063.841K2=,n=a+b+c+d.解析:(1)由统计表可知,在抽取的100人中,“歌迷”有25人,从而完成2×2列联表如下: 非歌迷歌迷总计男301545女451055总计7525100将2×2列联表中的数据代入公式计算得:K2==≈3.030<3.841所以我们没有95%的把握认为是否为“歌迷”与性别有关.(2)由统计表可知,“超级歌迷”有5人,其中2名女性,3名男性,设2名女性分别为a1,a2,3名男性分别为b1,b2,b3,从中任取2人所包含的基本事件有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3),共10个,用A表示“任意选取的2人中,至少有1名女性观众”这一事件,A包含的基本事件有: (a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),共7个,所以P(A)=.
相关试卷
这是一份高考数学第一轮复习第十章 §10.4 变量间的相关关系、统计案例,共24页。试卷主要包含了)),5,,844,820>3,5x+17,5+29+32等内容,欢迎下载使用。
这是一份2023年高考数学(文数)一轮复习课时54《变量间的相关关系统计案例》达标练习(2份,答案版+教师版),文件包含2023年高考数学文数一轮复习课时54《变量间的相关关系统计案例》达标练习含详解doc、2023年高考数学文数一轮复习课时54《变量间的相关关系统计案例》达标练习教师版doc等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
这是一份2023年高考数学(文数)一轮复习创新思维课时练10.4《变量间的相关关系与统计案例》(2份,教师版+原卷版),文件包含2023年高考数学文数一轮复习创新思维课时练104《变量间的相关关系与统计案例》教师版doc、2023年高考数学文数一轮复习创新思维课时练104《变量间的相关关系与统计案例》原卷版doc等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。