开学活动
搜索
    上传资料 赚现金

    18.平行四边形的小结与复习课件PPT

    18.平行四边形的小结与复习课件PPT第1页
    18.平行四边形的小结与复习课件PPT第2页
    18.平行四边形的小结与复习课件PPT第3页
    18.平行四边形的小结与复习课件PPT第4页
    18.平行四边形的小结与复习课件PPT第5页
    18.平行四边形的小结与复习课件PPT第6页
    18.平行四边形的小结与复习课件PPT第7页
    18.平行四边形的小结与复习课件PPT第8页
    还剩24页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    18.平行四边形的小结与复习课件PPT

    展开

    这是一份18.平行四边形的小结与复习课件PPT,共32页。
    小结与复习第十八章 平行四边形一、几种特殊四边形的性质对边平行且相等对边平行且相等对边平行且四边相等对边平行且四边相等对角相等四个角都是直角对角相等四个角都是直角互相平分互相平分且相等互相垂直平分且相等,每一条对角线平分一组对角轴对称图形轴对称图形轴对称图形互相垂直且平分,每一条对角线平分一组对角二、几种特殊四边形的常用判定方法:1.定义:两组对边分别平行 2.两组对边分别相等 3.两组对角分别相等 4.对角线互相平分5.一组对边平行且相等 1.定义:有一个角是直角的平行四边形 2.对角线相等的平行四边形3.有三个角是直角的四边形1.定义:一组邻边相等的平行四边形 ;2.对角线互相垂直的平行四边形,3.四条边都相等的四边形1.定义:一组邻边相等且有一个角是直角的平行四边形2.有一组邻边相等的矩形 3.有一个角是直角的菱形5种判定方法三个角是直角四条边相等一个角是直角或对角线相等一组邻边相等或对角线垂直一组邻边相等或对角线垂直一个角是直角或对角线相等一个角是直角且一组邻边相等三、平行四边形、矩形、菱形、正方形之间的关系四、其他重要概念及性质1.两条平行线之间的距离:2.三角形的中位线定理:两条平行线中,一条直线上任意一点到另一条直线的距离叫做两条平行线之间的距离.三角形的中位线平行于第三边,并且等于第三边的一半.3.直角三角形斜边上的中线:直角三角形斜边上的中线等于斜边的一半.例1 如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.(1)求证:四边形DEGF是平行四边形;(2)如果点G是BC的中点,且BC=12,DC=10,求四边形AGCD的面积.解:(1)∵AG∥DC,AD∥BC,∴四边形AGCD是平行四边形,∴AG=DC.∵E、F分别为AG、DC的中点,∴GE= AG,DF= DC,即GE=DF,GE∥DF,∴四边形DEGF是平行四边形.(2)∵点G是BC的中点,BC=12,∴BG=CG= BC=6.∵四边形AGCD是平行四边形,DC=10, AG=DC=10,在Rt△ABG中,根据勾股定理得AB=8,∴四边形AGCD的面积为6×8=48.例2 在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.证明:∵DF∥AC,DE∥AB,∴四边形AFDE是平行四边形.∴AF=DE.∵DF∥AC,∴∠FDB=∠C,又∵AB=AC,∴∠B=∠C,∴∠FDB=∠B,∴DF=BF,∴DE+DF=AF+BF=AB=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,求DF的值.解:(2)图②中:AC+DE=DF. 图③中:AC+DF=DE.(3)当如图①的情况,DF=AC-DE=6-4=2; 当如图②的情况,DF=AC+DE=6+4=10.2.在四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有(  )A.3种 B.4种C.5种 D.6种 B1.如图,在▱ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为(  )A.4cm B.5cm C.6cm D.8cm A3.如图是某公交汽车挡风玻璃的雨刮器,其工作原理如图.雨刷EF⊥AD,垂足为A,AB=CD,且AD=BC,这样能使雨刷EF在运动时,始终垂直于玻璃窗下沿BC,请证明这一结论.证明:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AD∥BC.又∵EF⊥AD,∴EF⊥BC.图图例3 如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形.(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点, AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC, ∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.例4 如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF= BC.若AB=12,求EF的长.解:连接CD,∵点D,E分别是边AB,AC的中点,∴DE∥BC,DE= BC,DC= AB.∵CF= BC,∴DE ∥FC,DE =FC,∴四边形DEFC是平行四边形,∴DC=EF,∴EF= AB=6.5. 如图,在△ABC中,∠B=90°,D,E分别是AB,AC的中点,DE=2,AC=5,则AB=______.4.如图,等边三角形ABC中,点D,E分别为AB,AC的中点,则∠DEC的度数为(  ) A.150° B.120° C.60° D.30° B37. 如图,在△ABC中,D,E,F分别是AB,BC,AC的中点,AB=6,AC=8,DF=5,求AE的长.解:∵D,F是中点,∴DF= BC.∵DF=5,∴BC=10.又∵AB=6,AC=8,∴AB2+AC2=BC2,∴∠BAC=90°.∵E是中点,∴AE= BC=5.例5 如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE∥BD,过点D作ED∥AC,两线相交于点E.求证:四边形AODE是菱形.证明:∵AE∥BD,ED∥AC,∴四边形AODE是平行四边形.∵四边形ABCD是矩形,∴AC=BD,OA=OC= AC, OB=OD= BD,∴OA=OC=OD,∴四边形AODE是菱形.变式 如图,O是菱形ABCD对角线的交点,作BE∥AC,CE∥BD,BE、CE交于点E,四边形CEBO是矩形吗?说出你的理由.DABCEO解:四边形CEBO是矩形.理由如下:已知四边形ABCD是菱形.∴AC⊥BD.∴∠BOC=90°.∵BE∥AC,CE∥BD,∴四边形CEBO是平行四边形.∴四边形CEBO是矩形.例6 如图,已知在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE;(1)试判断四边形BECF是什么四边形?并说明理由;(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.解:(1)四边形BECF是菱形.理由如下:∵EF垂直平分BC,∴BF=FC,BE=EC,∴∠3=∠1.∵∠ACB=90°,∴∠3+∠4=90°,∠1+∠2=90°,∴∠2=∠4,∴EC=AE,∴BE=AE.∵CF=AE,∴BE=EC=CF=BF,∴四边形BECF是菱形.(2)当∠A=45°时,菱形BECF是正方形.证明如下:∵∠A=45°,∠ACB=90°,∴∠CBA=45°,∴∠EBF=2∠CBA=90°,∴菱形BECF是正方形. 正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角;③还可以先判定四边形是平行四边形,再用①或②进行判定.例7 如图,在矩形ABCD中,P是AB上一动点,M,N,E分别 是PD,PC,CD的中点. (1)求证:四边形PMEN是平行四边形; (2)当P运动到何处时,四边形PMEN是菱形,请说明理由; (3)在(2)的条件下,当AD与AB满足什么数量关系时,四边形PMEN为正方形.(请直接写出结果)解:(1)证明:∵M、N、E分别是PD、PC、CD的中点,∴ME∥PC,EN∥PD.∴四边形PMEN是平行四边形.(3)解:AB=2AD.7.如图,两个含有30°角的完全相同的三角板ABC和DEF沿直线FC滑动,下列说法错误的是(  )A.四边形ACDF是平行四边形 B.当点E为BC中点时,四边形ACDF是矩形 C.当点B与点E重合时,四边形ACDF是菱形 D.四边形ACDF不可能是正方形 B8.如图,在菱形ABCD中,对角线AC=10,BD=6,则菱形ABCD的面积为_____.309.如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF的长. (1)证明:∵四边形ABCD是正方形,∴AB=AD.在△ABE和△DAF中, ∴△ABE≌△DAF. (2) 解:∵四边形ABCD是正方形,∴∠1+∠4=90°.∵∠3=∠4,∴∠1+∠3=90°,∴∠AFD=90°.在正方形ABCD中, AD∥BC,∴∠1=∠AGB=30°.在Rt△ADF中,∠AFD=90°,AD=2,∴DF=1,AF= .由(1)得△ABE≌△DAF,∴AE=DF=1,∴EF=AF-AE= -1.例8 在一个平行四边形中,若一个角的平分线把一条边分成长是2cm和3cm的两条线段,求该平行四边形的周长是多少.解:如图,∵在平行四边形ABCD中,AB=CD,AD=BC,AD∥BC,∴∠AEB=∠CBE.又∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE.①当AE=2时,则平行四边形的周长=2×(2+5)=14.②当AE=3时,则平行四边形的周长=2×(3+5)=16.分类讨论思想 考点四 本章解题思想方法平行四边形的性质与判定中要是出现角平分线,常与等腰三角形的性质和判定结合起来考查,当边指向不明时需要分类讨论,常见的的模型如下:例9 如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.方程思想 解:(1)由题意得AF=AD=10cm,在Rt△ABF中,∵AB=8,∴BF=6cm,∴FC=BC-BF=10-6=4(cm).(2)由题意可得EF=DE,可设DE的长为x,在Rt△EFC中,(8-x)2+42=x2,解得x=5,即EF的长为5cm.例10 如图,平行四边形ABCD中,AC、BD为对角线,其交点为O,若BC=6,BC边上的高为4,试求阴影部分的面积.转化思想 解:∵四边形ABCD为平行四边形,∴OA=OC,OB=OD.∵AB∥CD,∴∠EAO=∠HCO.又∵ ∠AOE=∠COH,∴△AEO≌△CHO(ASA),同理可得△OAQ≌△OCG,△OPD≌△OFB,∴S阴影=S△BCD= S平行四边形ABCD= ×6×4=12.QG四边形矩形菱形正方形平行四边形两组对边平行一个角是直角一组邻边相等一组邻边相等一个角是直角一个角是直角且一组邻边相等侵权必究THANKS

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map