2022年中考数学复习:统计与概率专题练习(Word版,附答案解析)
展开
这是一份2022年中考数学复习:统计与概率专题练习(Word版,附答案解析),共49页。
2022年中考数学复习(选择题):统计与概率(10题)
一.选择题(共10小题)
1.(2021•兰州)如图,将一个棱长为3的正方体表面涂上颜色,再把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为( )
A. B. C. D.
2.(2021•宁夏)“科学用眼,保护视力”是青少年珍爱生命的具体表现.某校随机抽查了50名八年级学生的视力情况,得到的数据如表:
视力
4.7以下
4.7
4.8
4.9
4.9以上
人数
8
7
9
14
12
则本次调查中视力的众数和中位数分别是( )
A.4.9和4.8 B.4.9和4.9 C.4.8和4.8 D.4.8和4.9
3.(2021•濮阳模拟)油田某中学利用假期对油田周边四个农贸市场某月份每天的青菜价格进行调查,他们计算出了青菜价格的平均值和方差如表:
农贸市场
胜利市场
百姓量贩
茂名路市场
庆西市场
青菜平均价格(元/斤)
1.2
1.3
1.2
1.2
方差S2
7.5
4.0
1.5
3.1
那么该月份青菜价格最稳定的市场是( )
A.胜利市场 B.百姓量贩 C.茂名路市场 D.庆西市场
4.(2021•日照)袁隆平院士被誉为“世界杂交水稻之父”,他研究的水稻,不仅高产,而且抗倒伏.在某次实验中,他的团队对甲、乙两种水稻品种进行产量稳定实验,各选取了8块条件相同的试验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为1200千克/亩,方差为S甲2=186.9,S乙2=325.3.为保证产量稳定,适合推广的品种为( )
A.甲 B.乙 C.甲、乙均可 D.无法确定
5.(2021•盘锦)甲、乙、丙、丁四人10次随堂测验的成绩如图所示,从图中可以看出这10次测验平均成绩较高且较稳定的是( )
A.甲 B.乙 C.丙 D.丁
6.(2021•河池)甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:
测试者
平均成绩(单位:m)
方差
甲
6.2
0.32
乙
6.0
0.58
丙
5.8
0.12
丁
6.2
0.25
若从其中选出1名成绩好且发挥稳定的同学参加学校运动会,则应选( )
A.甲 B.乙 C.丙 D.丁
7.(2021•攀枝花)疫情期间,某商店连续7天销售口罩的盒数分别为10,12,14,13,12,12,11.关于这组数据,以下结论错误的是( )
A.众数是12 B.平均数是12 C.中位数是12 D.方差是
8.(2021•汉川市模拟)2019年第七届世界军人运动会(7thCISMMilitaryWorldGames)于2019年10月18日至27日在中国武汉举行,这是中国第一次承办综合性国际军事赛事,也是继北京奥运会后,中国举办的规模最大的国际体育盛会.某射击运动员在赛前训练中射击了10次,成绩如图所示.下列结论中错误的是( )
A.众数是8 B.中位数是8
C.平均数是8.2 D.方差是1.6
9.(2021•铜仁市模拟)为提高就业率,铜仁相关部门要统计本市有就业需求的人员最喜欢的行业种类.以下是排乱的统计步骤:
①从扇形图中分析:出最喜欢的行业种类;
②利用手机APP收集有就业需求人员最喜欢的行业种类信息;
③绘制扇形图来表示各个行业种类所占的百分比;
④整理收集到的有就业需求人员最喜欢的行业种类信息并绘制频数分布表.
正确统计步骤的顺序是( )
A.②→③→①→④ B.③→④→①→② C.②→④→③→① D.①→②→④→③
10.(2021•漳州模拟)在一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入3个黑球(每个球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,则袋中红球的个数约为( )
A.8 B.14 C.17 D.20
2022年中考数学复习(填空题):统计与概率(10题)
二.填空题(共10小题)
1.(2021•德阳)要想了解九年级1500名学生的心理健康评估报告,从中抽取了300名学生的心理健康评估报告进行统计分析:,以下说法:①1500名学生是总体;②每名学生的心理健康评估报告是个体;③被抽取的300名学生是总体的一个样本;④300是样本容量.其中正确的是 .
2.(2021•郴州)为庆祝中国共产党建党一百周年,某校开展了主题为“我身边的共产党员”的演讲比赛.比赛从演讲内容、演讲技巧、演讲效果三个方面打分,最终得分按4:3:3的比例计算.若选手甲在演讲内容、演讲技巧、演讲效果三个方面的得分分别为95分、80分、90分,则选手甲的最终得分为 分.
3.(2021•佳木斯模拟)一个不透明的袋子中装有4个白球和若干个黄球,它们除颜色外完全相同,从袋子中随机摸出一球,再放回,不断重复,共摸球30次,其中10次摸到白球,则估计袋子中大约有黄球 个.
4.(2021•攀枝花)刘煜祺训练飞镖,在木板上画了直径为20cm和30cm的同心圆,如图,他在距木板5米开外将一个飞镖随机投掷到该图形内,则飞镖落在阴影区域的概率为 .
5.(2021•宁夏)七巧板是我国古代劳动人民的一项发明,被誉为“东方魔板”,它由五块等腰直角三角形、一块正方形和一块平行四边形组成,某同学利用七巧板拼成的正方形做“滚小球游戏”,小球可以在拼成的正方形上自由地滚动,并随机地停留在某块板上,如图所示,那么小球最终停留在阴影区域上的概率是 .
6.(2021•宁夏)某日,甲、乙两地的气温如图所示,如果将这一天甲、乙两地气温的方差分别记作S甲2,S乙2,则S甲2 S乙2(填“>”、“=”、“<”).
7.(2021•青岛)在一个不透明的袋中装有若干个红球和4个黑球,每个球除颜色外完全相同,摇匀后从中摸出一个球,记下颜色后再放回袋中,不断重复这一过程,共摸球100次,其中有40次摸到黑球,估计袋中红球的个数是 .
8.(2021•宜城市一模)一个不透明的布袋内装有除颜色外,其余完全相同的2个红球,2个白球,1个黑球,搅匀后,从中随机摸出两个球,则摸到一个红球和一个白球的概率为 .
9.(2021•甘肃模拟)在数学实践课上,同学们进行投针试验:在平面上有一组平行线,相邻两条平行线间的距离都为5cm,将一根长度为3cm的针任意投掷在这个平面上,针可能与某一直线相交,也可能与任一直线都不相交.右表记录了他们的试验数据.
若进行一次投针试验,估计针与直线相交的概率是 (结果保留小数点后一位).
试验次数
50
100
200
500
1000
2000
相交频数
23
48
83
207
404
802
相交频率
0.460
0.480
0.415
0.414
0.404
0.401
10.(2021•潍坊一模)为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计表.
用水量(xm3)
频数(万户)
30≤x<60
0.25
60≤x<90
0.75
90≤x<120
1.5
120≤x<150
1.0
150≤x<180
0.5
180≤x<210
0.4
210≤x<240
0.25
240≤x<270
0.15
270≤x<300
0.15
300≤x≤330
0.05
如表所示,下面四个推断合理的是 .
A.年用水量少于180m3的该市居民家庭按第一档水价交费
B.年用水量超过180m3但不超过240m3的该市居民家庭按第二档水价交费
C.年用水量超过240m3的该市居民家庭按第三档水价交费
D.该市居民家庭年用水量的中位数在120﹣150之间
2022年中考数学复习(解答题):统计与概率(10题)
三.解答题(共10小题)
1.(2021•攀枝花)某市某区在今年四月开始了第一剂新冠疫苗接种,为了解疫苗的安全、有效情况,从全区已接种市民中随机抽取部分市民进行调查.调查结果根据年龄x(岁)分为四类:A类:18≤x<30;B类:30≤x<40;C类:40≤x<50;D类:50≤x≤59.现将调查结果绘制成如下不完整的统计图,请根据统计图中的信息解答:下列问题:
(1)抽取的C类市民有 人,并补全条形统计图;
(2)若本次抽取人数占已接种市民人数的5%,估计该区已接种第一剂新冠疫苗的市民有多少人?
(3)区防疫站为了获取更详细的调查资料,从D类市民中选出两男两女,现准备从这四人中随机抽取两人进行访谈,请用列表法或画树状图的方法求出抽取的两人恰好是一男一女的概率.
2.(2021•青岛)在中国共产党成立一百周年之际,某校举行了以“童心向党”为主题的知识竞赛活动.发现该校全体学生的竞赛成绩(百分制)均不低于60分,现从中随机抽取n名学生的竞赛成绩进行整理和分析:(成绩得分用x表示,共分成四组),并绘制成如下的竞赛成绩分组统计表和扇形统计图,其中“90≤x≤100”这组的数据如下:
90,92,93,95,95,96,96,96,97,100.
竞赛成绩分组统计表
组别
竞赛成绩分组
频数
平均分
1
60≤x<70
8
65
2
70≤x<80
a
75
3
80≤x<90
b
88
4
90≤x≤100
10
95
请根据以上信息,解答:下列问题:
(1)a= ;
(2)“90≤x≤100”这组数据的众数是 分;
(3)随机抽取的这n名学生竞赛成绩的平均分是 分;
(4)若学生竞赛成绩达到96分以上(含96分)获奖,请你估计全校1200名学生中获奖的人数.
3.(2021•济南)为倡导绿色健康节约的生活方式,某社区开展“减少方便筷使用,共建节约型社区”活动.志愿者随机抽取了社区内50名居民,对其5月份方便筷使用数量进行了调查,并对数据进行了统计整理,以下是部分数据和不完整的统计图表:
方便筷使用数量在5≤x<15范围内的数据:
5,7,12,9,10,12,8,8,10,11,6,9,13,6,12,8,7.
不完整的统计图表:
方便筷使用数量统计表
组别
使用数量(双)
频数
A
0≤x<5
14
B
5≤x<10
C
10≤x<15
D
15≤x<20
a
E
x≥20
10
合计
50
请结合以上信息回答下列问题:
(1)统计表中的a= ;
(2)统计图中E组对应扇形的圆心角为 度;
(3)C组数据的众数是 ;调查的50名居民5月份使用方便筷数量的中位数是 ;
(4)根据调查结果,请你估计该社区2000名居民5月份使用方便筷数量不少于15双的人数.
4.(2021•阿坝州)某校为了加强同学们的安全意识,随机抽取部分同学进行了一次安全知识测试,按照测试成绩分为优秀、良好、合格和不合格四个等级,绘制了如下不完整的统计图.
(1)参加测试的学生人数为 ,等级为优秀的学生的比例为 ;
(2)该校有600名学生,请估计全校安全意识较强(测试成绩能达到良好以上等级)的学生人数;
(3)成绩为优秀的甲、乙两位同学被选中与其他学生一起参加安全宣讲活动,该活动随机分为A,B,C三组.求甲、乙两人恰好分在同一组的概率.
5.(2021•陕西)为弘扬中华传统文化,草根一中准备开展“传统手工技艺”学习实践活动.校学生会在全校范围内随机地对本校一些学生进行了“我最想学习的传统手工技艺”问卷调查(问卷共设有五个选项:“A——剪纸”、“B——木版画雕刻”、“C——陶艺创作”、“D——皮影制作”、“E——其他手工技艺”,参加问卷调查的这些学生,每人都只选了其中的一个选项),将所有的调查结果绘制成如下两幅不完整的统计图:
请你根据以上信息,回答下列问题:
(1)补全上面的条形统计图;
(2)本次问卷的这五个选项中,众数是 ;
(3)该校共有3600名学生,请你估计该校学生“最想学习的传统手工技艺”为“A——剪纸”的人数.
6.(2021•兰州)2021年2月25日,习近平总书记在全国脱贫攻坚总结表彰大会上庄严宣告中国脱贫攻坚取得了全面胜利,完成了消除绝对贫困的艰巨任务,创造了又一个彪炳史册的人间奇迹,根据2021年4月7日《人民日报》刊登的“人类减贫的中国实践”的相关数据进行收集和整理,信息如下:
信息一:脱贫攻坚以来中国农村年度贫困人口数量
信息二:脱贫攻坚以来财政专项扶贫资金投入
信息三:脱贫攻坚以来贫困地区农村居民和全国农村居民年人均可支配收入及增长率
年份、统计量
名称
2013
2014
2015
2016
2017
2018
2019
2020
平均数
贫困地区农村居民年人均可支配收入/元
6079
6852
7653
8452
9377
10371
11567
12588
9117
贫困地区农村居民年人均可支配收入增长率/%
16.5
12.7
11.7
10.4
10.9
10.6
11.5
8.8
11.6
全国农村居民年人均可支配收入增长率/%
12.4
11.2
8.9
8.2
8.6
8.8
9.6
6.9
9.3
请根据以上信息,解决下列问题:
(1)2019年底中国农村贫困人口数量为 万人.
(2)2013年底至2020年底,贫困地区农村居民年人均可支配收入的极差为 元.
(3)下列结论正确的是 (只填序号).
①脱贫攻坚以来中国农村贫因人口数量逐年减少,最终全部脱贫;
②脱贫攻坚以来我国贫困地区农村居民人均可支配收入年平均增长率为11.6%,增长持续快于全国农村;
③2016﹣2020年各级财政专项扶贫资金投入连续5年超过中央财政专项扶贫资金1000亿元.
7.(2021•德州)国家航天局消息北京时间2021年5月15日,我国首次火星着陆任务宣告成功,某中学科技兴趣小组为了解本校学生对航天科技的关注程度,在该校内进行了随机调查统计,将调查结果分为不关注、关注、比较关注、非常关注四类,回收、整理好全部调查问卷后,得到下列不完整的统计图:
(1)此次调查中接受调查的人数为 人;
(2)补全图1条形统计图;
(3)扇形统计图中,“关注”对应扇形的圆心角为 ;
(4)该校共有900人,根据调查结果估计该校“关注”,“比较关注”及“非常关注”航天科技的人数共多少人?
8.(2021•宁夏)2021年,“碳中和、碳达峰”成为高频热词.为了解学生对“碳中和、碳达峰”知识的知晓情况,某校团委随机对该校九年级部分学生进行了问卷调查,调查结果共分成四个类别:A表示“从未听说过”,B表示“不太了解”,C表示“比较了解”,D表示“非常了解”.根据调查统计结果,绘制成两种不完整的统计图.请结合统计图,回答下列问题.
(1)参加这次调查的学生总人数为 人;
(2)扇形统计图中,B部分扇形所对应的圆心角是 ;
(3)将条形统计图补充完整;
(4)在D类的学生中,有2名男生和2名女生,现需从这4名学生中随机抽取2名“碳中和、碳达峰”知识的义务宣讲员,请利用画树状图或列表的方法,求所抽取的2名学生恰好是1名男生和1名女生的概率.
9.(2021•内江)某学校为了解全校学生对电视节目(新闻、体育、动画、娱乐、戏曲)的喜爱情况,从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图.
请根据以上信息,解答:下列问题
(1)这次被调查的学生共有多少名?
(2)请将条形统计图补充完整;
(3)若该校有3000名学生,估计全校学生中喜欢体育节目的约有多少名?
(4)该校宣传部需要宣传干事,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2名,用树状图或列表法求恰好选中甲、乙两位同学的概率.
10.(2021•黔西南州)为引导学生知史爱党、知史爱国,某中学组织全校学生进行“党史知识”竞赛,该校德育处随机抽取部分学生的竞赛成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格,并绘制成两幅不完整的统计图.
根据以上信息,解答:下列问题:
(1)德育处一共随机抽取了 名学生的竞赛成绩;在扇形统计图中,表示“一般”的扇形圆心角的度数为 ;
(2)将条形统计图补充完整;
(3)该校共有1400名学生,估计该校大约有多少名学生在这次竞赛中成绩优秀?
(4)德育处决定从本次竞赛成绩前四名学生甲、乙、丙、丁中,随机抽取2名同学参加全市“党史知识”竞赛,请用树状图或列表法求恰好选中甲和乙的概率.
2022年中考数学复习(选择题):统计与概率(10题)
参考答案与试题解析
一.选择题(共10小题)
1.(2021•兰州)如图,将一个棱长为3的正方体表面涂上颜色,再把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为( )
A. B. C. D.
考点:概率公式.
专题:概率及其应用;数据分析:观念.
分析:直接根据题意得出恰有三个面被涂色的有8个,再利用概率公式求出答案.
解答:由题意可得:小立方体一共有27个,恰有三个面被涂色.的有8个,
故取得的小正方体恰有三个面被涂色.的概率为.
故选:B.
点评:此题主要考查了概率公式的应用,正确得出三个面被涂色.小立方体的个数是解题关键.
2.(2021•宁夏)“科学用眼,保护视力”是青少年珍爱生命的具体表现.某校随机抽查了50名八年级学生的视力情况,得到的数据如表:
视力
4.7以下
4.7
4.8
4.9
4.9以上
人数
8
7
9
14
12
则本次调查中视力的众数和中位数分别是( )
A.4.9和4.8 B.4.9和4.9 C.4.8和4.8 D.4.8和4.9
考点:中位数;众数.
专题:数据的收集与整理;数据分析:观念.
分析:由统计表可知视力为4.9的有14人,人数最多,所以众数为4.9;总人数为50,得到中位数应为第25与第26个的平均数,而第25个数和第26个数都是4.9,即可确定出中位数为4.9.
解答:由统计表可知众数为4.9;
共有:8+7+9+14+12=50人,中位数应为第25与第26个的平均数,
而第25个数和第26个数都是4.9,则中位数是4.9.
故选:B.
点评:此题考查中位数、众数的求法:
①给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.
②给定一组数据,出现次数最多的那个数,称为这组数据的众数.如果一组数据存在众数,则众数一定是数据集里的数.
3.(2021•濮阳模拟)油田某中学利用假期对油田周边四个农贸市场某月份每天的青菜价格进行调查,他们计算出了青菜价格的平均值和方差如表:
农贸市场
胜利市场
百姓量贩
茂名路市场
庆西市场
青菜平均价格(元/斤)
1.2
1.3
1.2
1.2
方差S2
7.5
4.0
1.5
3.1
那么该月份青菜价格最稳定的市场是( )
A.胜利市场 B.百姓量贩 C.茂名路市场 D.庆西市场
考点:算术平均数;方差.
专题:统计的应用;应用意识.
分析:根据方差的定义,方差越小数据越稳定即可求解.
解答:∵1.5<3.1<4.0<7.5,
∴茂名路市场的方差最小,
∴该月份青菜价格最稳定的市场是茂名路市场;
故选:C.
点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
4.(2021•日照)袁隆平院士被誉为“世界杂交水稻之父”,他研究的水稻,不仅高产,而且抗倒伏.在某次实验中,他的团队对甲、乙两种水稻品种进行产量稳定实验,各选取了8块条件相同的试验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为1200千克/亩,方差为S甲2=186.9,S乙2=325.3.为保证产量稳定,适合推广的品种为( )
A.甲 B.乙 C.甲、乙均可 D.无法确定
考点:方差.
专题:统计的应用;数据分析:观念.
分析:根据方差的意义求解即可.
解答:∵S甲2=186.9,S乙2=325.3,
∴S甲2<S乙2,
∴为保证产量稳定,适合推广的品种为甲,
故选:A.
点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
5.(2021•盘锦)甲、乙、丙、丁四人10次随堂测验的成绩如图所示,从图中可以看出这10次测验平均成绩较高且较稳定的是( )
A.甲 B.乙 C.丙 D.丁
考点:算术平均数;方差.
专题:统计的应用;数据分析:观念.
分析:利用平均数和方差的意义进行判断.
解答:由折线统计图得:丙、丁的成绩在92附近波动,甲、乙的成绩在91附近波动,
∴丙、丁的平均成绩高于甲、乙,
由折线统计图得:丙成绩的波动幅度小于丁成绩的波动幅度,
∴这四人中丙的平均成绩好又发挥稳定,
故选:C.
点评:本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,与平均值的离散程度越差,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了折线统计图.
6.(2021•河池)甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:
测试者
平均成绩(单位:m)
方差
甲
6.2
0.32
乙
6.0
0.58
丙
5.8
0.12
丁
6.2
0.25
若从其中选出1名成绩好且发挥稳定的同学参加学校运动会,则应选( )
A.甲 B.乙 C.丙 D.丁
考点:方差.
专题:统计的应用;数据分析:观念.
分析:比较平均数的大小可确定甲和丁的成绩较好,然后比较甲和丁的方差即可得到成绩较好,且发挥稳定的同学.
解答:∵甲和丁的平均数比乙和丙的平均数大,
∴甲和丁的成绩较好,
∵S丁2<S甲2,
∴丁的成绩比甲要稳定,
∴这四位同学中,成绩较好,且发挥稳定的是丁.
故选:D.
点评:此题考查了方差,用到的知识点是方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
7.(2021•攀枝花)疫情期间,某商店连续7天销售口罩的盒数分别为10,12,14,13,12,12,11.关于这组数据,以下结论错误的是( )
A.众数是12 B.平均数是12 C.中位数是12 D.方差是
考点:算术平均数;中位数;众数;方差.
专题:统计的应用;运算能力.
分析:根据众数、平均数、中位数及方差的定义分别对每一项进行分析:,即可得出答案.
解答:A、12出现了3次,出现的次数最多,则这组数据的众数是12,故本选项正确,不符合题意;
B、这组数据的平均数:=12,故本选项正确,不符合题意;
C、把这些数从小到大排列为:10,11,12,12,12,13,14,中位数是12,故本选项正确,不符合题意;
D、方差是:×[(10﹣12)2+(11﹣12)2+3×(12﹣12)2+(13﹣12)2+(14﹣12)2]=,故本选项错误,符合题意;
故选:D.
点评:本题主要考查方差、众数、平均数、中位数,解题的关键是掌握众数、平均数、中位数、方差的定义.
8.(2021•汉川市模拟)2019年第七届世界军人运动会(7thCISMMilitaryWorldGames)于2019年10月18日至27日在中国武汉举行,这是中国第一次承办综合性国际军事赛事,也是继北京奥运会后,中国举办的规模最大的国际体育盛会.某射击运动员在赛前训练中射击了10次,成绩如图所示.下列结论中错误的是( )
A.众数是8 B.中位数是8
C.平均数是8.2 D.方差是1.6
考点:折线统计图;算术平均数;中位数;众数;方差.
专题:数据的收集与整理;数据分析:观念.
分析:根据众数、中位数、平均数以及方差的算法进行计算,即可得出答案.
解答:由图可得,数据8出现3次,次数最多,所以众数为8,故选项A不合题意;
10次成绩排序后为:6,7,7,8,8,8,9,9,10,10,所以中位数是×(8+8)=8,故选项B不合题意;
平均数为×(6+7×2+8×3+9×2+10×2)=8.2,故③选项C不合题意;
方差为×[(6﹣8.2)2+(7﹣8.2)2+(7﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(9﹣8.2)2+(9﹣8.2)2+(10﹣8.2)2+(10﹣8.2)2]=1.56,故选项D符合题意;
故选:D.
点评:本题主要考查了众数、中位数、平均数以及方差,用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差.
9.(2021•铜仁市模拟)为提高就业率,铜仁相关部门要统计本市有就业需求的人员最喜欢的行业种类.以下是排乱的统计步骤:
①从扇形图中分析:出最喜欢的行业种类;
②利用手机APP收集有就业需求人员最喜欢的行业种类信息;
③绘制扇形图来表示各个行业种类所占的百分比;
④整理收集到的有就业需求人员最喜欢的行业种类信息并绘制频数分布表.
正确统计步骤的顺序是( )
A.②→③→①→④ B.③→④→①→② C.②→④→③→① D.①→②→④→③
考点:调查收集数据的过程与方法;频数(率)分布表;频数(率)分布直方图;扇形统计图.
专题:统计的应用;数据分析:观念.
分析:根据题意和频数分布表、扇形统计图制作的步骤,可以解答:本题.
解答:正确统计步骤的顺序是:
②利用手机APP收集有就业需求人员最喜欢的行业种类信息;
④整理收集到的有就业需求人员最喜欢的行业种类信息并绘制频数分布表;
③绘制扇形图来表示各个行业种类所占的百分比;
①从扇形图中分析:出最喜欢的行业种类;
故选:C.
点评:本题考查扇形统计图、频数分布表,解答:本题的关键是明确制作频数分布表和扇形统计图的制作步骤.
10.(2021•漳州模拟)在一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入3个黑球(每个球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,则袋中红球的个数约为( )
A.8 B.14 C.17 D.20
考点:用样本估计总体;利用频率估计概率.
专题:概率及其应用;数据分析:观念.
分析:用黑球的个数除以摸到黑球频率得出球的总个数,继而得出答案.
解答:由题意知,袋中球的总个数约为3÷(1﹣0.85)=20(个),
所以袋中红球的个数约为20﹣3=17(个),
故选:C.
点评:本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
2022年中考数学复习(填空题):统计与概率(10题)
参考答案与试题解析
二.填空题(共10小题)
1.(2021•德阳)要想了解九年级1500名学生的心理健康评估报告,从中抽取了300名学生的心理健康评估报告进行统计分析:,以下说法:①1500名学生是总体;②每名学生的心理健康评估报告是个体;③被抽取的300名学生是总体的一个样本;④300是样本容量.其中正确的是 ②④ .
考点:总体、个体、样本、样本容量.
专题:数据的收集与整理;数据分析:观念.
分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
解答:①1500名学生的心理健康评估报告是总体,故①不符合题意;
②每名学生的心理健康评估报告是个体,故②符合题意;
③被抽取的300名学生的心理健康评估报告是总体的一个样本,故③不符合题意;
④300是样本容量,故④符合题意;
故答案为:②④.
点评:考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
2.(2021•郴州)为庆祝中国共产党建党一百周年,某校开展了主题为“我身边的共产党员”的演讲比赛.比赛从演讲内容、演讲技巧、演讲效果三个方面打分,最终得分按4:3:3的比例计算.若选手甲在演讲内容、演讲技巧、演讲效果三个方面的得分分别为95分、80分、90分,则选手甲的最终得分为 89 分.
考点:加权平均数.
专题:数据的收集与整理;数据分析:观念.
分析:根据加权平均数的计算公式列出式子,再进行计算即可.
解答:选手甲的最终得分为:==89(分).
故答案为:89.
点评:此题考查了加权平均数,关键是根据加权平均数的计算公式列出式子,是一道基础题,比较简单.
3.(2021•佳木斯模拟)一个不透明的袋子中装有4个白球和若干个黄球,它们除颜色外完全相同,从袋子中随机摸出一球,再放回,不断重复,共摸球30次,其中10次摸到白球,则估计袋子中大约有黄球 8 个.
考点:利用频率估计概率.
专题:概率及其应用;应用意识.
分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设未知数列出方程求解.
解答:∵共试验30次,其中有10次摸到白球,
∴黄球所占的比例为=,
设袋子中共有黄球x个,则=,
解得:x=8.
故答案为:8.
点评:本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是根据白球的频率得到相应的等量关系.
4.(2021•攀枝花)刘煜祺训练飞镖,在木板上画了直径为20cm和30cm的同心圆,如图,他在距木板5米开外将一个飞镖随机投掷到该图形内,则飞镖落在阴影区域的概率为 .
考点:几何概率.
专题:概率及其应用;运算能力.
分析:首先计算出大圆和小圆的面积,进而可得阴影部分的面积,再求出阴影部分面积与总面积之比即可得到飞镖击中阴影区域的概率.
解答:大圆面积:π×()2=225π (cm2),
小圆面积:π×()2=100π(cm2),
阴影部分面积:225π﹣100π=125π(cm2),
飞镖落在阴影区域的概率为:=.
故答案为:.
点评:此题主要考查了概率,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
5.(2021•宁夏)七巧板是我国古代劳动人民的一项发明,被誉为“东方魔板”,它由五块等腰直角三角形、一块正方形和一块平行四边形组成,某同学利用七巧板拼成的正方形做“滚小球游戏”,小球可以在拼成的正方形上自由地滚动,并随机地停留在某块板上,如图所示,那么小球最终停留在阴影区域上的概率是 .
考点:几何概率.
专题:概率及其应用;运算能力.
分析:设大正方形的边长为2,先求出阴影区域的面积,然后根据概率公式即可得出答案.
解答:如图,设大正方形的边长为2,则GE=1,E到DC的距离d=,
阴影区域的面积为:1×=,
大正方形的面积是:22=4,
所以小球最终停留在阴影区域上的概率是=.
故答案为:.
点评:本题考查几何概率,熟练掌握几何概率的计算方法是解题的关键.
6.(2021•宁夏)某日,甲、乙两地的气温如图所示,如果将这一天甲、乙两地气温的方差分别记作S甲2,S乙2,则S甲2 < S乙2(填“>”、“=”、“<”).
考点:折线统计图;方差.
专题:统计的应用;推理能力.
分析:根据气温统计图可知:甲地的气温比较稳定,波动小,由方差的意义知,波动小者方差小.
解答:观察平均气温统计图可知:甲地的气温比较稳定,波动小;故甲地的气温的方差小.
所以S甲2<S乙2.
故答案为:<.
点评:本题考查方差的意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
7.(2021•青岛)在一个不透明的袋中装有若干个红球和4个黑球,每个球除颜色外完全相同,摇匀后从中摸出一个球,记下颜色后再放回袋中,不断重复这一过程,共摸球100次,其中有40次摸到黑球,估计袋中红球的个数是 6 .
考点:用样本估计总体.
专题:概率及其应用;运算能力.
分析:利用频率估计概率可估计摸到黑球的概率为,然后根据概率公式构建方程求解即可.
解答:设袋中红球的个数是x个,根据题意得:
=,
解得:x=6,
经检验:x=6是分式方程的解,
即估计袋中红球的个数是6个,
故答案为6.
点评:本题考查了利用频率估计概率:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随试验次数的增多,值越来越精确.
8.(2021•宜城市一模)一个不透明的布袋内装有除颜色外,其余完全相同的2个红球,2个白球,1个黑球,搅匀后,从中随机摸出两个球,则摸到一个红球和一个白球的概率为 .
考点:列表法与树状图法.
专题:概率及其应用;数据分析:观念.
分析:先列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
解答:根据题意列表如下:
红
红
白
白
黑
红
(红,红)
(白,红)
(白,红)
(黑,红)
红
(红,红)
(白,红)
(白,红)
(黑,红)
白
(红,白)
(红,白)
(白,白)
(黑,白)
白
(红,白)
(红,白)
(白,白)
(黑,白)
黑
(红,黑)
(红,黑)
(白,黑)
(白,黑)
共有20种等情况数,其中摸到一个红球和一个白球的有8种结果,
所以摸到一个红球和一个白球的概率为=,
故答案为:.
点评:本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.
9.(2021•甘肃模拟)在数学实践课上,同学们进行投针试验:在平面上有一组平行线,相邻两条平行线间的距离都为5cm,将一根长度为3cm的针任意投掷在这个平面上,针可能与某一直线相交,也可能与任一直线都不相交.右表记录了他们的试验数据.
若进行一次投针试验,估计针与直线相交的概率是 0.4 (结果保留小数点后一位).
试验次数
50
100
200
500
1000
2000
相交频数
23
48
83
207
404
802
相交频率
0.460
0.480
0.415
0.414
0.404
0.401
考点:平行线之间的距离;利用频率估计概率.
专题:概率及其应用;数据分析:观念.
分析:根据频率和概率的关系判断即可.
解答:在大量重复试验中,根据频率估计概率的方法可估计出针与直线相交的概率是0.4,
故答案为:0.4.
点评:本题主要考查频率与概率的知识,熟练掌握根据频率估计概率的方法是解题的关键.
10.(2021•潍坊一模)为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计表.
用水量(xm3)
频数(万户)
30≤x<60
0.25
60≤x<90
0.75
90≤x<120
1.5
120≤x<150
1.0
150≤x<180
0.5
180≤x<210
0.4
210≤x<240
0.25
240≤x<270
0.15
270≤x<300
0.15
300≤x≤330
0.05
如表所示,下面四个推断合理的是 AB .
A.年用水量少于180m3的该市居民家庭按第一档水价交费
B.年用水量超过180m3但不超过240m3的该市居民家庭按第二档水价交费
C.年用水量超过240m3的该市居民家庭按第三档水价交费
D.该市居民家庭年用水量的中位数在120﹣150之间
考点:频数(率)分布表;中位数.
专题:统计的应用;应用意识.
分析:由统计表中的频数可知约有4万户,约为样本的80%,可判断选项A;由,可判断选项B;由年用水量超过240m3的用户所占比例可知还有一部分按第二档交费,可判断选项C;由中位数的定义可判断中位数不一定在120﹣150之间,可判断选项D.
解答:∵从统计表可知年用水量少于180m3的用户共有0.25+0.75+1.5+1+0.5=4(万户),5×80%=4(万户),
∴选项A符合题意;
∵年用水量超过180m3但小于270m3的用户共有0.4+0.25=0.65(万户),,
∴年用水量超过180m3但不超过240m3的用户一定在第二档中,选项B符合题意;
∵年用水量超过240m3的用户所占比例为100%﹣80%﹣13%=7%>5%,
∴年用水量超过240m3的用户中还有一部分按第二档交费,选项C不符合题意;
∵中位数应为第25000户和第25001户的平均数,
第25000户的用水量在90≤x<120之间,第25001户的用水量在120≤x<150之间,
∴两者的平均数不一定在120﹣150之间,选项D不符合题意;
故答案为:AB.
点评:本题考查了统计表的有关知识,掌握频数和中位数的含义是解决问题的关键.
2022年中考数学复习(解答题):统计与概率(10题)
参考答案与试题解析
三.解答题(共10小题)
1.(2021•攀枝花)某市某区在今年四月开始了第一剂新冠疫苗接种,为了解疫苗的安全、有效情况,从全区已接种市民中随机抽取部分市民进行调查.调查结果根据年龄x(岁)分为四类:A类:18≤x<30;B类:30≤x<40;C类:40≤x<50;D类:50≤x≤59.现将调查结果绘制成如下不完整的统计图,请根据统计图中的信息解答:下列问题:
(1)抽取的C类市民有 30 人,并补全条形统计图;
(2)若本次抽取人数占已接种市民人数的5%,估计该区已接种第一剂新冠疫苗的市民有多少人?
(3)区防疫站为了获取更详细的调查资料,从D类市民中选出两男两女,现准备从这四人中随机抽取两人进行访谈,请用列表法或画树状图的方法求出抽取的两人恰好是一男一女的概率.
考点:扇形统计图;条形统计图;列表法与树状图法.
专题:统计的应用;数据分析:观念.
分析:(1)根据抽取的C类的百分比求出其他三类的百分比,由其他三类的人数和除以其他三类的百分比可得抽取的总数,乘以抽取的C类的百分比即可得抽取的C类人数,从而补全条形统计图;
(2)根据本次抽取人数占已接种市民人数的5%即可求解;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到一男和一女的情况,再利用概率公式即可求得答案.
解答:(1)根据题意可得,其他三类的百分比为1﹣25%=75%,
其他三类的人数和为20+20+50=90(人),
抽取的总数为90÷75%=120(人),
抽取的C类市民有120×25%=30(人),
补全条形统计图如下:
故答案为:30;
(2)120÷5%=2400(人),
答:估计该区已接种第一剂新冠疫苗的市民有2400人;
(3)画树状图得:
∵共有12种等可能的结果,抽取的两人恰好是一男和一女的有8种结果,
∴抽取的两人恰好是一男和一女的概率为=.
点评:此题考查了树状图法与列表法求概率以及条形统计图,扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.
2.(2021•青岛)在中国共产党成立一百周年之际,某校举行了以“童心向党”为主题的知识竞赛活动.发现该校全体学生的竞赛成绩(百分制)均不低于60分,现从中随机抽取n名学生的竞赛成绩进行整理和分析:(成绩得分用x表示,共分成四组),并绘制成如下的竞赛成绩分组统计表和扇形统计图,其中“90≤x≤100”这组的数据如下:
90,92,93,95,95,96,96,96,97,100.
竞赛成绩分组统计表
组别
竞赛成绩分组
频数
平均分
1
60≤x<70
8
65
2
70≤x<80
a
75
3
80≤x<90
b
88
4
90≤x≤100
10
95
请根据以上信息,解答:下列问题:
(1)a= 12 ;
(2)“90≤x≤100”这组数据的众数是 96 分;
(3)随机抽取的这n名学生竞赛成绩的平均分是 82.6 分;
(4)若学生竞赛成绩达到96分以上(含96分)获奖,请你估计全校1200名学生中获奖的人数.
考点:用样本估计总体;频数(率)分布表;扇形统计图;加权平均数;众数.
专题:统计的应用;数据分析:观念.
分析:(1)根据第1组的频数和百分比求出抽取的总数,总数乘以第2组的百分比即可得a的值;
(2)根据众数的意义即可求解;
(3)先求出第3组的频数,根据平均数的意义即可求解;
(4)求出学生竞赛成绩达到96分以上学生所占的百分比,即可估计总体中学生竞赛成绩达到96分以上学生所占的百分比,进而求出人数.
解答:(1)8÷16%=50(名),
50×24%=12(名),
因此a=12,
故答案为:12;
(2)“90≤x≤100”这组的数据中出现最多的是96,
∴“90≤x≤100”这组数据的众数是96分,
故答案为:96;
(3)第3组的频数b=50﹣8﹣12﹣10=20,
随机抽取的这n名学生竞赛成绩的平均分是:×(65×8+75×12+88×20+95×10)=82.6(分),
故答案为:82.6;
(4)1200×=120(人),
答:估计全校1200名学生中获奖的人数有120人.
点评:本题考查扇形统计图、众数、平均数以及样本估计总体,掌握平均数、众数的意义和计算方法是正确解答:的前提.
3.(2021•济南)为倡导绿色健康节约的生活方式,某社区开展“减少方便筷使用,共建节约型社区”活动.志愿者随机抽取了社区内50名居民,对其5月份方便筷使用数量进行了调查,并对数据进行了统计整理,以下是部分数据和不完整的统计图表:
方便筷使用数量在5≤x<15范围内的数据:
5,7,12,9,10,12,8,8,10,11,6,9,13,6,12,8,7.
不完整的统计图表:
方便筷使用数量统计表
组别
使用数量(双)
频数
A
0≤x<5
14
B
5≤x<10
C
10≤x<15
D
15≤x<20
a
E
x≥20
10
合计
50
请结合以上信息回答下列问题:
(1)统计表中的a= 9 ;
(2)统计图中E组对应扇形的圆心角为 72 度;
(3)C组数据的众数是 12 ;调查的50名居民5月份使用方便筷数量的中位数是 10 ;
(4)根据调查结果,请你估计该社区2000名居民5月份使用方便筷数量不少于15双的人数.
考点:用样本估计总体;频数(率)分布表;扇形统计图;中位数;众数.
专题:统计的应用;数据分析:观念.
分析:(1)由总组人数减去其他组人数即可求解;
(2)利用360°×E组所占的比例即可得E组对应扇形的圆心角度数;
(3)根据众数,中位数的定义求解即可;
(4)2000×5月份使用方便筷数量不少于15双的人数所占比例即可求解.
解答:(1)方便筷使用数量在5≤x<15范围内的数据有17个,
∴a=50﹣14﹣17﹣10=9,
故答案为:9;
(2)360°×=72°,
故答案为:72;
(3)将方便筷使用数量在10≤x<15范围内的数据按从小到大的顺序排列为10,10,11,12,12,12,13,
由上述数据可得C组数据的众数是12,
B组的频数是10,C组的频数为7,D组的频数为9,
∴第25,26个数均为10,
∴调查的50名居民5月份使用方便筷数量的中位数是=10.
故答案为:12,10;
(4)2000×=760(人),
答:估计该社区2000名居民5月份使用方便筷数量不少于15双的人数为760人.
点评:本题考查统计表、用样本估计总体以及扇形统计图,应结合统计表和扇形统计图,利用部分与总体之间的关系进行求解.
4.(2021•阿坝州)某校为了加强同学们的安全意识,随机抽取部分同学进行了一次安全知识测试,按照测试成绩分为优秀、良好、合格和不合格四个等级,绘制了如下不完整的统计图.
(1)参加测试的学生人数为 40人 ,等级为优秀的学生的比例为 30% ;
(2)该校有600名学生,请估计全校安全意识较强(测试成绩能达到良好以上等级)的学生人数;
(3)成绩为优秀的甲、乙两位同学被选中与其他学生一起参加安全宣讲活动,该活动随机分为A,B,C三组.求甲、乙两人恰好分在同一组的概率.
考点:扇形统计图;条形统计图;概率公式.
专题:统计的应用;数据分析:观念.
分析:(1)利用良好的人数除以良好的人数所占的百分比可得抽查的人数,然后求出优秀的学生的比例即可;
(2)良好以上占比是30%,再利用样本代表总体的方法得出答案;
(3)直接利用树状图法求出所有可能,进而求出概率.
解答:(1)抽取的学生数:16÷40%=40(人);
优秀人数:12÷40=30%;
故答案为:40人;30%;
(2)良好以上占比是30%,
所以全校安全意识较强(测试成绩能达到良好以上等级)的学生人数约:600×30%=180(名);
(3)如图:
可得一共有9种可能,甲、乙两人恰好分在同一组有3种,
所以甲、乙两人恰好分在同一组的概率为.
点评:此题主要考查了树状图法求概率以及扇形统计图和条形统计图的应用,由图形获取正确信息是解题关键.
5.(2021•陕西)为弘扬中华传统文化,草根一中准备开展“传统手工技艺”学习实践活动.校学生会在全校范围内随机地对本校一些学生进行了“我最想学习的传统手工技艺”问卷调查(问卷共设有五个选项:“A——剪纸”、“B——木版画雕刻”、“C——陶艺创作”、“D——皮影制作”、“E——其他手工技艺”,参加问卷调查的这些学生,每人都只选了其中的一个选项),将所有的调查结果绘制成如下两幅不完整的统计图:
请你根据以上信息,回答下列问题:
(1)补全上面的条形统计图;
(2)本次问卷的这五个选项中,众数是 “C——陶艺创作” ;
(3)该校共有3600名学生,请你估计该校学生“最想学习的传统手工技艺”为“A——剪纸”的人数.
考点:用样本估计总体;扇形统计图;条形统计图;众数.
专题:统计的应用;运算能力;推理能力.
分析:(1)由“C——陶艺创作”的人数除以所占百分比求出参加问卷调查的学生人数,即可解决问题;
(2)由众数的定义求解即可;
(3)由该校共有的学生人数乘以“A——剪纸”的人数所占的比例即可.
解答:(1)参加问卷调查的学生人数为:90÷30%=300(人),
则“D——皮影制作”的人数为:300﹣66﹣54﹣90﹣15=75(人),
补全条形统计图如下:
(2)本次问卷的这五个选项中,众数是“C——陶艺创作”,
故答案为:“C——陶艺创作”;
(3)估计该校学生“最想学习的传统手工技艺”为“A——剪纸”的人数为:3600×=792(人).
点评:本题考查了条形统计图、扇形统计图、用样本估计总体以及众数,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答:问题.
6.(2021•兰州)2021年2月25日,习近平总书记在全国脱贫攻坚总结表彰大会上庄严宣告中国脱贫攻坚取得了全面胜利,完成了消除绝对贫困的艰巨任务,创造了又一个彪炳史册的人间奇迹,根据2021年4月7日《人民日报》刊登的“人类减贫的中国实践”的相关数据进行收集和整理,信息如下:
信息一:脱贫攻坚以来中国农村年度贫困人口数量
信息二:脱贫攻坚以来财政专项扶贫资金投入
信息三:脱贫攻坚以来贫困地区农村居民和全国农村居民年人均可支配收入及增长率
年份、统计量
名称
2013
2014
2015
2016
2017
2018
2019
2020
平均数
贫困地区农村居民年人均可支配收入/元
6079
6852
7653
8452
9377
10371
11567
12588
9117
贫困地区农村居民年人均可支配收入增长率/%
16.5
12.7
11.7
10.4
10.9
10.6
11.5
8.8
11.6
全国农村居民年人均可支配收入增长率/%
12.4
11.2
8.9
8.2
8.6
8.8
9.6
6.9
9.3
请根据以上信息,解决下列问题:
(1)2019年底中国农村贫困人口数量为 551 万人.
(2)2013年底至2020年底,贫困地区农村居民年人均可支配收入的极差为 6509 元.
(3)下列结论正确的是 ①②③ (只填序号).
①脱贫攻坚以来中国农村贫因人口数量逐年减少,最终全部脱贫;
②脱贫攻坚以来我国贫困地区农村居民人均可支配收入年平均增长率为11.6%,增长持续快于全国农村;
③2016﹣2020年各级财政专项扶贫资金投入连续5年超过中央财政专项扶贫资金1000亿元.
考点:条形统计图;折线统计图;算术平均数;极差.
专题:统计的应用;数据分析:观念;运算能力.
分析:(1)根据信息一:脱贫攻坚以来中国农村年度贫困人口数量的条形统计图即可求得;
(2)根据信息三中的表格数据,以及极差的定义即可求得,极差:一组数据中最大值与最小值的差叫做这组数据的极差;
(3)根据信息一可得①正确,根据信息三中的表格数据,求得平均年增长率,并且观察每一年的数据贫困地区农村居民人均可支配收入增长率快于全国农村的可支配收入增长率,即可判断②,根据信息二:脱贫攻坚以来财政专项扶贫资金投入,计算2016﹣2020年各级财政专项扶贫资金投入减去中央财政专项扶贫资金即可判断③.
解答:(1)根据信息一:脱贫攻坚以来中国农村年度贫困人口数量的条形统计图即可知:2019年底中国农村贫困人口数量为551万人;
故答案为:551;
(2)12588﹣6079=6509,
故答案为:6509;
(3)根据信息一,可得,脱贫攻坚以来中国农村贫因人口数量逐年减少,最终全部脱贫,故①正确;
②∵(16.5+12.7+11.7+10.4+10.9+10.6+11.5+8.8+11.6)÷9≈11.6,且每一年的我国贫困地区农村居民人均可支配收入年增长率持续快于全国农村;故②正确;
③2016年:1700﹣665=1035>1000,
2017年:2220﹣865=1355>1000,
2018年:2780﹣1065=1715>1000,
2019年:3160﹣1265=1895>1000,
2020年:3520﹣1465=2055>1000,
2016﹣2020年各级财政专项扶贫资金投入连续5年超过中央财政专项扶贫资金1000亿元.故③正确,
故答案为:①②③.
点评:本题考查了求极差,平均数,折线统计图,条形统计图,准确识图,从表格或统计图获取信息是解题的关键.
7.(2021•德州)国家航天局消息北京时间2021年5月15日,我国首次火星着陆任务宣告成功,某中学科技兴趣小组为了解本校学生对航天科技的关注程度,在该校内进行了随机调查统计,将调查结果分为不关注、关注、比较关注、非常关注四类,回收、整理好全部调查问卷后,得到下列不完整的统计图:
(1)此次调查中接受调查的人数为 50 人;
(2)补全图1条形统计图;
(3)扇形统计图中,“关注”对应扇形的圆心角为 43.2° ;
(4)该校共有900人,根据调查结果估计该校“关注”,“比较关注”及“非常关注”航天科技的人数共多少人?
考点:用样本估计总体;扇形统计图;条形统计图.
专题:数据的收集与整理;数据分析:观念.
分析:(1)从统计图中可以得到不关注、关注、比较关注的共有34人,占调查人数的68%,可求出调查人数;
(2)接受调查的人数乘以非常关注的百分比即可得到非常关注的人数,即可补全统计图;
(3)360°乘以关注”的比例即可得到“关注”对应扇形的圆心角度数;
(4)样本估计总体,样本中“关注”,“比较关注”及“非常关注”的占比68%,乘以该校人数900人即可求解.
解答:(1)不关注、关注、比较关注的共有4+6+24=34(人),占调查人数的1﹣32%=68%,
∴此次调查中接受调查的人数为34÷68%=50(人),
故答案为:50;
(2)50×32%=16(人),
补全统计图如图所示:
(3)360°×=43.2°,
故答案为:43.2°;
(4)900×=828(人),
答:估计该校“关注”,“比较关注”及“非常关注”航天科技的人数共有828人.
点评:考查扇形统计图、条形统计图的意义和制作方法,从两个统计图中获取数量和数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.
8.(2021•宁夏)2021年,“碳中和、碳达峰”成为高频热词.为了解学生对“碳中和、碳达峰”知识的知晓情况,某校团委随机对该校九年级部分学生进行了问卷调查,调查结果共分成四个类别:A表示“从未听说过”,B表示“不太了解”,C表示“比较了解”,D表示“非常了解”.根据调查统计结果,绘制成两种不完整的统计图.请结合统计图,回答下列问题.
(1)参加这次调查的学生总人数为 40 人;
(2)扇形统计图中,B部分扇形所对应的圆心角是 108° ;
(3)将条形统计图补充完整;
(4)在D类的学生中,有2名男生和2名女生,现需从这4名学生中随机抽取2名“碳中和、碳达峰”知识的义务宣讲员,请利用画树状图或列表的方法,求所抽取的2名学生恰好是1名男生和1名女生的概率.
考点:扇形统计图;条形统计图;列表法与树状图法.
专题:概率及其应用;数据分析:观念.
分析:(1)根据A类别人数及其所占百分比可得被调查的总人数;
(2)用360°乘以B类别人数所占比例即可;
(3)根据四种类别人数人数之和等于总人数求出C类别人数即可补全图形;
(4)画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
解答:(1)参加这次调查的学生总人数为6÷15%=40(人),
故答案为:40;
(2)扇形统计图中,B部分扇形所对应的圆心角是360°×=108°,
故答案为:108°;
(3)C类别人数为40﹣(6+12+4)=18(人),
补全图形如下:
(4)画树状图为:
共有12种等可能的结果数,其中恰好选中1名男生和1名女生的结果数为8,
∴所抽取的2名学生恰好是1名男生和1名女生的概率=.
点评:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图
9.(2021•内江)某学校为了解全校学生对电视节目(新闻、体育、动画、娱乐、戏曲)的喜爱情况,从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图.
请根据以上信息,解答:下列问题
(1)这次被调查的学生共有多少名?
(2)请将条形统计图补充完整;
(3)若该校有3000名学生,估计全校学生中喜欢体育节目的约有多少名?
(4)该校宣传部需要宣传干事,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2名,用树状图或列表法求恰好选中甲、乙两位同学的概率.
考点:用样本估计总体;扇形统计图;条形统计图;概率公式;列表法与树状图法.
专题:概率及其应用;运算能力.
分析:(1)根据动画类人数及其百分比求得总人数;
(2)总人数减去其他类型人数可得体育类人数,据此补全图形即可;
(3)用样本估计总体的思想解决问题;
(4)根据题意先画出列表,得出所有情况数,再根据概率公式即可得出答案.
解答:(1)这次被调查的学生人数为15÷30%=50(名);
(2)喜爱“体育”的人数为50﹣(4+15+18+3)=10(名),
补全图形如下:
(3)估计全校学生中喜欢体育节目的约有3000×=600(名);
(4)列表如下:
甲
乙
丙
丁
甲
﹣﹣﹣
(乙,甲)
(丙,甲)
(丁,甲)
乙
(甲,乙)
﹣﹣﹣
(丙,乙)
(丁,乙)
丙
(甲,丙)
(乙,丙)
﹣﹣﹣
(丁,丙)
丁
(甲,丁)
(乙,丁)
(丙,丁)
﹣﹣﹣
所有等可能的结果为12种,恰好选中甲、乙两位同学的有2种结果,
所以恰好选中甲、乙两位同学的概率为=.
点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
10.(2021•黔西南州)为引导学生知史爱党、知史爱国,某中学组织全校学生进行“党史知识”竞赛,该校德育处随机抽取部分学生的竞赛成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格,并绘制成两幅不完整的统计图.
根据以上信息,解答:下列问题:
(1)德育处一共随机抽取了 40 名学生的竞赛成绩;在扇形统计图中,表示“一般”的扇形圆心角的度数为 108° ;
(2)将条形统计图补充完整;
(3)该校共有1400名学生,估计该校大约有多少名学生在这次竞赛中成绩优秀?
(4)德育处决定从本次竞赛成绩前四名学生甲、乙、丙、丁中,随机抽取2名同学参加全市“党史知识”竞赛,请用树状图或列表法求恰好选中甲和乙的概率.
考点:用样本估计总体;扇形统计图;条形统计图;列表法与树状图法.
专题:统计的应用;概率及其应用;运算能力;推理能力.
分析:(1)由成绩“良好”的学生人数除以所占百分比求出德育处一共随机抽取的学生人数,即可解决问题;
(2)把条形统计图补充完整即可;
(3)由该校共有学生人数乘以在这次竞赛中成绩优秀的学生所占的比例即可;
(4)画树状图,共有12种等可能的结果,恰好选中甲和乙的结果有6种,再由概率公式求解即可.
解答:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名),
则在条形统计图中,成绩“一般”的学生人数为:40﹣10﹣16﹣2=12(名),
∴在扇形统计图中,成绩“一般”的扇形圆心角的度数为:360°×=108°,
故答案为:40,108°;
(2)把条形统计图补充完整如下:
(3)1400×=350(名),
即估计该校大约有350名学生在这次竞赛中成绩优秀;
(4)画树状图如图:
共有12种等可能的结果,恰好选中甲和乙的结果有2种,
∴恰好选中甲和乙的概率为=.
点评:此题考查的是树状图法求概率.树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.也考查了条形统计图和扇形统计图.
相关试卷
这是一份初中数学中考复习 专题12 统计与概率(解析版),共16页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份初中数学中考复习 专题04 统计与概率(解析版),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022年中考数学复习:圆专题练习(Word版,附答案解析),共55页。