所属成套资源:(通用版)中考数学一轮复习 优选训练题 (含答案)
(通用版)中考数学一轮复习5.1《多边形与平行四边形 优选训练题 (含答案)
展开
这是一份(通用版)中考数学一轮复习5.1《多边形与平行四边形 优选训练题 (含答案),共6页。
1.一个正n边形的每一个外角都是36°,则n=( )
A.7 B.8 C.9 D.10
2.若平行四边形的两条对角线长为6 cm和16 cm,则下列长度的线段可作为平行四边形边长的是( )
A.5 cm B.8 cm
C.12 cm D.16 cm
3.如图在▱ABCD中,已知AC=4 cm,若△ACD的周长为13 cm,则▱ABCD的周长为( )
A.26 cm B.24 cm
C.20 cm D.18 cm
4.如图,在四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形,则应增加的条件是( )
A.AB=CD B.∠BAD=∠DCB
C.AC=BD D.∠ABC+∠BAD=180°
5.顺次连接平面上A,B,C,D四点得到一个四边形,从①AB∥CD;②BC=AD;③∠A=∠C;④∠B=∠D四个条件中任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况共有( )
A.5种 B.4种
C.3种 D.1种
6.一个n边形的每个内角都为144°,则边数n为________.
7.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消融,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=__________度.
8.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是__________.
9.如图,▱ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M.如果△CDM的周长为8,那么▱ABCD的周长是________.
10.如图,点E,F分别放在▱ABCD的边BC,AD上,AC,EF交于点O,请你添加一个条件(只添一个即可),使四边形AECF是平行四边形,你所添加的条件是____________________________.
11.如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形.
12.如图,B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.
求证:四边形ABED是平行四边形.
13.在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD的周长是( )
A.22 B.20
C.22或20 D.18
14.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连接EF,BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( )
A.1个 B.2个
C.3个 D.4个
15.一个多边形有44条对角线,那么这个多边形内角和是________________.
16.如图,五边形ABCDE是正五边形,若l1平行l2,则∠1-∠2=__________.
17.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=3eq \r(2),在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=______.
18.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.
(1)求证:四边形BCFD为平行四边形;
(2)若AB=6,求平行四边形BCFD的面积.
19.阅读理解:如图1,在平面内选一定点O,引一条有方向的射线ON,再选定一个单位长度,那么平面上任一点M的位置可由∠MON的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.
应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线ON上,则正六边形的顶点C的极坐标应记为( )
A.(60°,4) B.(45°,4)
C.(60°,2eq \r(2)) D.(50°,2eq \r(2))
参考答案
【基础训练】
1.D 2.B 3.D 4.B 5.C
6.10 7.360 8.40° 9.16 10.AF=CE(答案不唯一)
11.证明:∵四边形ABCD是平行四边形,
∴AB∥CD,且AB=CD.
又∵AE=CF,∴BE=DF.
∵BE∥DF,且BE=DF,
∴四边形BFDE是平行四边形.
12.证明:∵AB∥DE,AC∥DF,
∴∠B=∠DEF,∠ACB=∠F.
∵BE=CF,∴BE+CE=CF+CE,
∴BC=EF.
在△ABC和△DEF中,eq \b\lc\{(\a\vs4\al\c1(∠B=∠DEF,,BC=EF,,∠ACB=∠F,))
∴△ABC≌△DEF(ASA),∴AB=DE.
又∵AB∥DE,∴四边形ABED是平行四边形.
【拔高训练】
13.C 14.D
15.1 620° 16.72° 17.6
18.(1)证明:在△ABC中,∵∠ACB=90°,
∠CAB=30°,
∴∠ABC=60°.
在等边△ABD中,∵∠BAD=60°,
∴∠BAD=∠ABC=60°,∴BC∥AD.
∵E为AB的中点,
∴CE=eq \f(1,2)AB,BE=eq \f(1,2)AB,
∴CE=BE,
∴∠BCE=∠EBC=60°,
∴∠BEC=∠AEF,
∴∠AFE=∠D=60°,
∴FC∥BD,
∴四边形BCFD是平行四边形.
(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,
∴BC=eq \f(1,2)AB=3,AC=eq \r(3)BC=3eq \r(3),
∴S平行四边形BCFD=3×3eq \r(3)=9eq \r(3).
【培优训练】
19.A
相关试卷
这是一份(通用版)中考数学一轮复习重点题型 优选训练题大题加练02 (含答案),共12页。
这是一份(通用版)中考数学一轮复习5.2《矩形菱形正方形 优选训练题 (含答案),共7页。试卷主要包含了菱形不具备的性质是,下列命题正确的是等内容,欢迎下载使用。
这是一份(通用版)中考数学一轮复习3.4《反比例函数 优选训练题 (含答案),共8页。试卷主要包含了已知等内容,欢迎下载使用。