类型4题型12二次函数与圆的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版)
展开类型十二 二次函数与圆的问题
【典例1】如图,抛物线y=ax2+x+c经过点A(﹣1,0)和点C (0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP∥y轴,交抛物线于点P.
(1)求该抛物线的解析式;
(2)在抛物线上是否存在一点Q,使得△QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)以M为圆心,MP为半径作⊙M,当⊙M与坐标轴相切时,求出⊙M的半径.
【答案】(1)y=﹣x2+x+3;(2)不存在,理由见解析;(3)⊙M的半径为或
【解析】
【分析】
(1)已知抛物线y=ax2+x+c经过点A(﹣1,0)和点C(0,3),利用待定系数法即可求得抛物线解析式;
(2)在抛物线上找到一点Q,使得△QCO是等边三角形,过点Q作OM⊥OB于点M,过点Q作QN⊥OC于点N,根据△QCO是等边三角形,求得Q点坐标,再验证Q点是否在抛物线上;
(3)分两种情况①当⊙M与y轴相切,如图所示,令M点横坐标为t,PM=t,将PM用t表示出来,列出关于t的一元二次方程,求得t,进而求得半径;②⊙M与x轴相切,过点M作MN⊥OB于N,如图所示,令M点横坐标为m,因为PN=2MN,列出关于m的一元二次方程,即可求出m,进而求得⊙M的半径.
【详解】
(1)∵抛物线y=ax2+x+c经过点A(﹣1,0)和点C(0,3)
∴
解得
∴该抛物线的解析式为:y=﹣x2+x+3
故答案为:y=﹣x2+x+3
(2)在抛物线上找到一点Q,使得△QCO是等边三角形,过点Q作OM⊥OB于点M,过点Q作QN⊥OC于点N
∵△QCO是等边三角形,OC=3
∴CN=
∴NQ=
即Q(,)
当x=时,y=﹣×()2+×+3=≠
∴Q(,)不在抛物线上
y=﹣x2+x+3
故答案为:不存在,理由见解析
(3)①⊙M与y轴相切,如图所示
∵y=﹣x2+x+3
当y=0时,﹣x2+x+3=0
解得x1=-1,x2=4
∴B(4,0)
令直线BC的解析式为y=kx+b
解得
∴直线BC的解析式为
令M点横坐标为t
∵MP∥y轴,⊙M与y轴相切
∴t=﹣t2+t+3-
解得t=
⊙M的半径为
②⊙M与x轴相切,过点M作MN⊥OB于N,如图所示
令M点横坐标为m
∵PN=2MN
∴
解得m=1或m=4(舍去)
∴⊙M的半径为:
故答案为:⊙M的半径为或
【点睛】
本题考查了待定系数法求二次函数解析式,是二次函数的综合题,涉及了二次函数与几何问题,二次函数与圆的问题,其中考查了圆切线的性质.
【典例2】将抛物线向下平移6个单位长度得到抛物线,再将抛物线向左平移2个单位长度得到抛物线.
(1)直接写出抛物线,的解析式;
(2)如图(1),点在抛物线对称轴右侧上,点在对称轴上,是以为斜边的等腰直角三角形,求点的坐标;
(3)如图(2),直线(,为常数)与抛物线交于,两点,为线段的中点;直线与抛物线交于,两点,为线段的中点.求证:直线经过一个定点.
【答案】(1)抛物线的解析式为: y=x2-4x-2;抛物线的解析式为:y=x2-6;(2)点的坐标为(5,3)或(4,-2);(3)直线经过定点(0,2)
【解析】
【分析】
(1)根据函数图象上下平移:函数值上加下减;左右平移:自变量左加右减写出函数解析式并化简即可;
(2)先判断出点A、B、O、D四点共圆,再根据同弧所对的圆周角相等得到∠BDA=∠BOA=45°,从而证出是等腰直角三角形.设点A的坐标为(x,x2-4x-2),把DC和AC用含x的代数式表示出来,利用DC=AC列方程求解即可,注意有两种情况;
(3)根据直线(,为常数)与抛物线交于,两点,联立两个解析式,得到关于x的一元二次方程,根据根与系数的关系求出点M的横坐标,进而求出纵坐标,同理求出点N的坐标,再用待定系数法求出直线MN的解析式,从而判断直线MN经过的定点即可.
【详解】
解:(1)∵抛物线向下平移6个单位长度得到抛物线,再将抛物线向左平移2个单位长度得到抛物线,
∴抛物线的解析式为:y=(x-2)2-6,即y=x2-4x-2,
抛物线的解析式为:y=(x-2+2)2-6,即y=x2-6.
(2)如下图,过点A作AC⊥x轴于点C,连接AD,
∵是等腰直角三角形,
∴∠BOA =45°,
又∵∠BDO=∠BAO=90°,
∴点A、B、O、D四点共圆,
∴∠BDA=∠BOA=45°,
∴∠ADC=90°-∠BDA=45°,
∴是等腰直角三角形,
∴DC=AC.
∵点在抛物线对称轴右侧上,点在对称轴上,
∴抛物线的对称轴为x=2,
设点A的坐标为(x,x2-4x-2),
∴DC=x-2,AC= x2-4x-2,
∴x-2= x2-4x-2,
解得:x=5或x=0(舍去),
∴点A的坐标为(5,3);
同理,当点B、点A在x轴的下方时,
x-2= -(x2-4x-2),
x=4或x=-1(舍去),
∴点的坐标为(4,-2),
综上,点的坐标为(5,3)或(4,-2).
(3)∵直线(,为常数)与抛物线交于,两点,
∴,
∴x2-kx-6=0,
设点E的横坐标为xE,点F的横坐标为xF,
∴xE+xF=k,
∴中点M的横坐标xM==,
中点M的纵坐标yM=kx=,
∴点M的坐标为(,);
同理可得:点N的坐标为(,),
设直线MN的解析式为y=ax+b(a≠0),
将M(,)、N(,)代入得:
,
解得:,
∴直线MN的解析式为y= ·x+2(),
不论k取何值时(),当x=0时,y=2,
∴直线经过定点(0,2).
【点睛】
本题考查二次函数综合应用,熟练掌握图象平移的规律、判断点A、B、O、D四点共圆的方法、用待定系数法求函数解析式的步骤是解题的关键.
【典例3】如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,抛物线过点B且与直线相交于另一点.
(1)求抛物线的解析式;
(2)点P是抛物线上的一动点,当时,求点P的坐标;
(3)点在x轴的正半轴上,点是y轴正半轴上的一动点,且满足.
①求m与n之间的函数关系式;
②当m在什么范围时,符合条件的N点的个数有2个?
【答案】(1);(2)或(3,)或(-2,-3);(3)①;②0<m<
【解析】
【分析】
(1)利用一次函数求出A和B的坐标,结合点C坐标,求出二次函数表达式;
(2)当点P在x轴上方时,点P与点C重合,当点P在x轴下方时,AP与y轴交于点Q,求出AQ表达式,联立二次函数,可得交点坐标,即为点P;
(3)①过点C作CD⊥x轴于点D,证明△MNO∽△NCD,可得,整理可得结果;
②作以MC为直径的圆E,根据圆E与线段OD的交点个数来判断M的位置,即可得到m的取值范围.
【详解】
解:(1)∵直线与x轴交于点A,与y轴交于点B,
令x=0,则y=2,令y=0,则x=4,
∴A(4,0),B(0,2),
∵抛物线经过B(0,2),,
∴,解得:,
∴抛物线的表达式为:;
(2)当点P在x轴上方时,点P与点C重合,满足,
∵,
∴,
当点P在x轴下方时,如图,AP与y轴交于点Q,
∵,
∴B,Q关于x轴对称,
∴Q(0,-2),又A(4,0),
设直线AQ的表达式为y=px+q,代入,
,解得:,
∴直线AQ的表达式为:,联立得:
,解得:x=3或-2,
∴点P的坐标为(3,)或(-2,-3),
综上,当时,点P的坐标为:或(3,)或(-2,-3);
(3)①如图,∠MNC=90°,过点C作CD⊥x轴于点D,
∴∠MNO+∠CND=90°,
∵∠OMN+∠MNO=90°,
∴∠CND=∠OMN,又∠MON=∠CDN=90°,
∴△MNO∽△NCD,
∴,即,
整理得:;
②如图,∵∠MNC=90°,
以MC为直径画圆E,
∵,
∴点N在线段OD上(不含O和D),即圆E与线段OD有两个交点(不含O和D),
∵点M在y轴正半轴,
当圆E与线段OD相切时,
有NE=MC,即NE2=MC2,
∵M(0,m),,
∴E(,),
∴=,
解得:m=,
当点M与点O重合时,如图,
此时圆E与线段OD(不含O和D)有一个交点,
∴当0<m<时,圆E与线段OD有两个交点,
故m的取值范围是:0<m<.
【点睛】
本题是二次函数综合,考查了求二次函数表达式,相似三角形的判定和性质,圆周角定理,一次函数表达式,难度较大,解题时要充分理解题意,结合图像解决问题.
【典例4】如图10-1,已知点P是抛物线上的一个点,点D、E的坐标分别为(0, 1)、(1, 2),连结PD、PE,求PD+PE的最小值.
图10-1
【解析】点P不在一条笔直的河流上,没有办法套用“牛喝水”的模型.
设P,那么PD2=.所以PD=.
如图10-2,的几何意义可以理解为抛物线上的动点P到直线y=-1的距离PH.所以PD=PH.因此PD+PE就转化为PH+PE.
如图10-3,当P、E、H三点共线,即PH⊥x轴时,PH+PE的最小值为3.
高中数学会学到,抛物线是到定点的距离等于到定直线的距离的点的集合,在中考数学压轴题里, 如果要用到这个性质,最好铺垫一个小题,求证PD=PH.
图10-2 图10-3
【典例5】如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.
(1)求这条抛物线对应的函数表达式;
(2)已知R是抛物线上的点,使得△ADR的面积是▱OABC的面积的,求点R的坐标;
(3)已知P是抛物线对称轴上的点,满足在直线MD上存在唯一的点Q,使得∠PQE=45°,求点P的坐标.
【答案】解:(1)OA=2=BC,故函数的对称轴为x=1,则x=﹣=1①,
将点A的坐标代入抛物线表达式得:0=4a﹣2b+②,
联立①②并解得,故抛物线的表达式为:y=﹣x2+x+③;
(2)由抛物线的表达式得,点M(1,3)、点D(4,0);
∵△ADR的面积是▱OABC的面积的,
∴×AD×|yR|=×OA×OB,则×6×|yR|=×2×,解得:yR=±④,
联立④③并解得,或
故点R的坐标为(1+,4)或(1﹣,4)或(1+,﹣4)或(1﹣,﹣4);
(3)作△PEQ的外接圆R,
∵∠PQE=45°,故∠PRE=90°,
则△PRE为等腰直角三角形,
当直线MD上存在唯一的点Q,则RQ⊥MD,
点M、D的坐标分别为(1,4)、(4,0),
则ME=4,ED=4﹣1=3,则MD=5,
过点R作RH⊥ME于点H,
设点P(1,2m),则PH=HE=HR=m,则圆R的半径为m,则点R(1+m,m),
S△MED=S△MRD+S△MRE+S△DRE,即×EM•ED=×MD×RQ+×ED•yR+×ME•RH,
∴×4×3=×5×m+×4×m+×3×m,解得m=60﹣84,故点P(1,120﹣168).
【分析】(1)OA=2=BC,故函数的对称轴为x=1,则x=﹣=1①,将点A的坐标代入抛物线表达式得:0=4a﹣2b+②,联立①②即可求解;(2)△ADR的面积是▱OABC的面积的,则×AD×|yR|=×OA×OB,则×6×|yR|=×2×,即可求解;
(3)∠PQE=45°,故∠PRE=90°,则△PRE为等腰直角三角形,当直线MD上存在唯一的点Q,则RQ⊥MD,即可求解.
【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、圆的基本知识、面积的计算等,综合性强,难度较大.
类型4题型11二次函数与正方形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版): 这是一份类型4题型11二次函数与正方形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版),文件包含题型11二次函数与正方形有关的问题教师版doc、题型11二次函数与正方形有关的问题学生版doc等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
类型4题型10二次函数与矩形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版): 这是一份类型4题型10二次函数与矩形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版),文件包含题型10二次函数与矩形有关的问题教师版doc、题型10二次函数与矩形有关的问题学生版doc等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
类型4题型9二次函数与菱形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版): 这是一份类型4题型9二次函数与菱形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版),文件包含题型9二次函数与菱形有关的问题教师版doc、题型9二次函数与菱形有关的问题学生版doc等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。