年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    (通用版)中考数学总复习基础过关24《与圆有关的计算》作业过关卷(含答案)

    (通用版)中考数学总复习基础过关24《与圆有关的计算》作业过关卷(含答案)第1页
    (通用版)中考数学总复习基础过关24《与圆有关的计算》作业过关卷(含答案)第2页
    (通用版)中考数学总复习基础过关24《与圆有关的计算》作业过关卷(含答案)第3页
    还剩3页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (通用版)中考数学总复习基础过关24《与圆有关的计算》作业过关卷(含答案)

    展开

    这是一份(通用版)中考数学总复习基础过关24《与圆有关的计算》作业过关卷(含答案),共6页。试卷主要包含了如图所示是某公园设置的一休闲区,已知等内容,欢迎下载使用。
    基础过关
    1.已知一条圆弧的度数为60°,弧长为10π,则此圆弧的半径为( )
    A.15B.30
    C.eq \r(30)D.15π
    2.如果一个扇形的弧长等于它的半径,那么称此扇形为“等边扇形”,则半径为2的“等边扇形”的面积为( )
    A.πB.1
    C.eq \f(2,3)πD.2
    3.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则 eq \\ac(BC,\s\up10(︵)) 的长为( )
    A.eq \f(10,3)πB.eq \f(10,9)π
    C.πD.π
    4.如图,在矩形ABCD中,AB=4,AD=2,分别以A,C为圆心,AD,CB为半径画弧,交AB于点E,交CD于点F,则图中阴影部分的面积是( )
    A.4-2πB.8-eq \f(π,2)
    C.8-2πD.8-4π
    5.圆锥的底面半径长为5,将其侧面展开后得到一个半圆,则该半圆的半径长是__________.
    6.如图,在2×2的正方形网格中,每个小正方形的边长为1.以点O为圆心,2为半径画弧交图中网格线于点A,B,则弧AB的长是__________.
    7.如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为__________.(结果保留π)
    8.如图所示是某公园设置的一休闲区.∠AOB=90°,弧AB的半径OA=6米,C是OA的中点,点D在弧AB上,CD∥OB,求图中休闲区(阴影部分)的面积.
    9.已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD.
    图6
    (1)求证:∠DAC=∠DBA;
    (2)求证:P是线段AF的中点;
    (3)连接CD,若CD=3,BD=4,求⊙O的半径和DE的长.
    拓展提升
    1.如图,以边长为8的正方形纸片ABCD的边AB为直径作⊙O,交对角线AC于点E.
    (1)线段AE=__________;
    (2)如图,以点A为顶点作∠DAM=30°,交CD于点M,沿AM将四边形ABCM剪掉,使Rt△ADM绕点A逆时针旋转(如图),设旋转角为α(0°<α<150°),旋转过程中AD与⊙O交于点F.

    备用图
    ①当α=30°时,请求出线段AF的长;
    ②当α=60°时,求出线段AF的长;判断此时DM与⊙O的位置关系,并说明理由.
    课时24 与圆有关的计算
    基础过关 1.B 2.D 3.B 4.C 5.10 6.eq \f(π,3) 7.2π
    8.解:如图1,连接OD,
    图1
    ∵OA=6米,C是OA的中点,
    ∴OC=eq \f(1,2)OA=3(米).
    ∵∠AOB=90°,CD∥OB,∴CD⊥OA.
    在Rt△OCD中,∵OD=6,OC=3,
    ∴CD=eq \r(OD2-OC2)=3 eq \r(3)(米).
    ∵sin∠DOC=eq \f(CD,OD)=eq \f(\r(3),2),∴∠DOC=60°.
    ∴S阴影部分=S扇形OAD-S△DOC=eq \f(60π×62,360)-eq \f(1,2)×3×3 eq \r(3)=6π-eq \f(9 \r(3),2)(平方米).
    即休闲区的面积为eq \b\lc\(\rc\)(\a\vs4\al\c1(6π-\f(9 \r(3),2)))平方米.
    9.(1)证明:∵BD平分∠CBA,∴∠CBD=∠DBA.
    ∵∠DAC与∠CBD都是弧CD所对的圆周角,
    ∴∠DAC=∠CBD.∴∠DAC=∠DBA.
    (2)证明:如图2,∵AB为直径,∴∠ADB=90°.
    ∵DE⊥AB于E,∴∠DEB=90°.
    ∴∠1+∠3=∠5+∠3=90°.∴∠1=∠5=∠2.
    ∴PD=PA.
    又∠4+∠2=∠1+∠3=90°,
    ∴∠3=∠4.∴PD=PF.
    ∴PA=PF,即P是线段AF的中点.
    (3)解:如图2,连接CD,∵∠CBD=∠DBA,
    图2
    ∵eq \\ac(CD,\s\up10(︵))=eq \\ac(AD,\s\up10(︵)).∴CD=AD=3.
    ∵∠ADB=90°,∴AB=eq \r(AD2+BD2)=5.
    ∴⊙O的半径为2.5.
    ∵S△ABD=eq \f(1,2)DE×AB=eq \f(1,2)AD×BD,
    ∴5DE=3×4.∴DE=2.4.
    即DE的长为2.4.
    拓展提升 1.解:(1)4 eq \r(2);
    【提示】如图3,连接BE,∵AC是正方形ABCD的对角线,∴∠BAC=45°.∵AB是⊙O的直径,∴∠AEB=90°.
    图3
    ∴△AEB是等腰直角三角形.又AB=8,∴AE=AB·cs 45°=4 eq \r(2).
    (2)①如图4,连接OA,OF,由题意得∠NAD=30°,∠DAM=30°,
    图4
    故可得∠OAM=30°.则∠OAF=60°.
    又OA=OF,∴△OAF是等边三角形.
    ∵OA=4,∴AF=OA=4.
    ②如图5,连接B′F,并作OG⊥DM于点G,此时∠NAD=60°,
    图5
    ∵AB′=8,∠DAM=30°,∴AF=AB′·cs∠DAM=8×eq \f(\r(3),2)=4 eq \r(3).
    ∵OG⊥DM,∠ADM=90°,∴OG∥AD.
    ∴∠MOG=∠DAM=30°.
    ∵AD=8,∴AM=eq \f(8,cs∠DAM)=eq \f(16 \r(3),3).
    ∴OM=AM-OA=eq \f(16 \r(3),3)-4.
    ∴OG=OM·cs∠MOG=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(16 \r(3),3)-4))×eq \f(\r(3),2)=8-2 eq \r(3)>4.
    ∴DM与⊙O的位置关系是相离.

    相关试卷

    (通用版)中考数学总复习基础过关29《统计》作业过关卷(含答案):

    这是一份(通用版)中考数学总复习基础过关29《统计》作业过关卷(含答案),共5页。试卷主要包含了7位评委给一个演讲者打分如下等内容,欢迎下载使用。

    (通用版)中考数学总复习基础过关27《对称与折叠》作业过关卷(含答案):

    这是一份(通用版)中考数学总复习基础过关27《对称与折叠》作业过关卷(含答案),共6页。

    (通用版)中考数学总复习基础过关30《概率》作业过关卷(含答案):

    这是一份(通用版)中考数学总复习基础过关30《概率》作业过关卷(含答案),共5页。试卷主要包含了下列说法正确的是,已知等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map