年终活动
搜索
    上传资料 赚现金

    2021-2022高中数学人教版选修2-2教案:1.3.1函数的单调性与导数+(三)+Word版含答案

    立即下载
    加入资料篮
    2021-2022高中数学人教版选修2-2教案:1.3.1函数的单调性与导数+(三)+Word版含答案第1页
    2021-2022高中数学人教版选修2-2教案:1.3.1函数的单调性与导数+(三)+Word版含答案第2页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版新课标B选修2-21.3.1利用导数判断函数的单调性教学设计

    展开

    这是一份人教版新课标B选修2-21.3.1利用导数判断函数的单调性教学设计,共4页。
    课型:新授课
    教学目标:
    1.了解可导函数的单调性与其导数的关系;
    2.能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次;
    教学重点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间
    教学难点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间
    教学过程:
    一.创设情景
    函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用.
    二.新课讲授
    1.问题:图3.3-1(1),它表示跳水运动中高度随时间变化的函数的图像,图3.3-1(2)表示高台跳水运动员的速度随时间变化的函数的图像.
    运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?
    通过观察图像,我们可以发现:
    运动员从起点到最高点,离水面的高度随时间的增加而增加,即是增函数.相应地,.
    从最高点到入水,运动员离水面的高度随时间的增加而减少,即是减函数.相应地,.
    2.函数的单调性与导数的关系
    观察下面函数的图像,探讨函数的单调性与其导数正负的关系.
    如图3.3-3,导数表示函数在
    点处的切线的斜率.
    在处,,切线是“左下右上”式的,
    这时,函数在附近单调递增;
    在处,,切线是“左上右下”式的,
    这时,函数在附近单调递减.
    结论:函数的单调性与导数的关系
    在某个区间内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减.
    说明:(1)特别的,如果,那么函数在这个区间内是常函数.
    3.求解函数单调区间的步骤:
    (1)确定函数的定义域;
    (2)求导数;
    (3)解不等式,解集在定义域内的部分为增区间;
    (4)解不等式,解集在定义域内的部分为减区间.
    三.典例分析
    例1.已知导函数的下列信息:
    当时,;
    当,或时,;
    当,或时,
    试画出函数图像的大致形状.
    解:当时,,可知在此区间内单调递增;
    当,或时,;可知在此区间内单调递减;
    当,或时,,这两点比较特殊,我们把它称为“临界点”.
    综上,函数图像的大致形状如图3.3-4所示.
    例2.判断下列函数的单调性,并求出单调区间.
    (1); (2)
    (3); (4)
    解:(1)因为,所以,

    因此,在R上单调递增,如图3.3-5(1)所示.
    (2)因为,所以,
    当,即时,函数单调递增;
    当,即时,函数单调递减;
    函数的图像如图3.3-5(2)所示.
    (3)因为,所以,
    因此,函数在单调递减,如图3.3-5(3)所示.
    (4)因为,所以 .
    当,即 时,函数 ;
    当,即 时,函数 ;
    函数的图像如图3.3-5(4)所示.
    注:(3)、(4)生练

    相关教案

    高中数学人教版新课标B选修2-21.3.2利用导数研究函数的极值教学设计及反思:

    这是一份高中数学人教版新课标B选修2-21.3.2利用导数研究函数的极值教学设计及反思,共11页。教案主要包含了温故知新,新知探究,复习总结和作业布置等内容,欢迎下载使用。

    人教版新课标B选修2-21.1.2瞬时速度与导数教学设计:

    这是一份人教版新课标B选修2-21.1.2瞬时速度与导数教学设计,共3页。教案主要包含了课时目标,引入探索,提高练习等内容,欢迎下载使用。

    2020-2021学年1.3.1利用导数判断函数的单调性教案设计:

    这是一份2020-2021学年1.3.1利用导数判断函数的单调性教案设计,共4页。教案主要包含了教材分析,教学目标,教学重点难点,教学方法,课时安排,教学过程等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map