所属成套资源:高中数学北师大版必修第二册课件PPT+同步练习(含答案)+知识梳理+章节测试
高中数学北师大版 必修第二册第五章 ——复数(知识梳理)
展开
知识点1 复数1.概念:形如(a,b∈R)的数叫做复数,其中叫做虚数单位,全体复数所成的集合叫做复数集。复数通常用字母表示,即(a,b∈R)2.复数的分类
对于复数【a,b】,当且仅当b=0时,它是实数;当且仅当a=b=c=0时,它是实数0;当b≠0时,它叫做虚数,当a=0且b≠0时,它叫做纯虚数.
显然,实数集R,是复数集C的真子集,即.
3.复数相等的充要条件
在复数集C=中任取两个数,【a,b,c,d∈R】,
规定:与相等当且仅当a=c且b=d,即当且仅当两个复数的实部与实部相等,虚部与虚部相等时,两个复数才相等。4.对于复数的定义要注意以下几点:①(a,b∈R)被称为复数的代数形式,其中表示与虚数单位相乘②复数的实部和虚部都是实数,否则不是代数形式(2)分类: 满足条件(a,b为实数)复数的分类a+bi为实数?b=0a+bi为虚数?b≠0a+bi为纯虚数?a=0且b≠05.复数的模定义:向量的模叫做复数z=a+bi(a,b∈R)的模或绝对值.记法:复数z=a+bi的模记为|z|或|a+bi|.公式:|z|=|a+bi|=.6.共轭复数定义:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.虚部不等于0的两个共轭复数也叫共轭虚数.表示:z的共轭复数用表示,即若z=a+bi(a,b∈R),则=a-bi. 知识点2 复数的加、减运算及其几何意义复数加法与减法的运算法则1.设z1=a+bi,z2=c+di(a,b,c,d∈R)是任意两个复数,则(1)z1+z2=(a+c)+(b+d)i;(2)z1-z2=(a-c)+(b-d)i.2.对任意z1,z2,z3∈C,有(1)z1+z2=z2+z1;(2)(z1+z2)+z3=z1+(z2+z3).复数加减法的几何意义如图,设复数z1,z2对应向量分别为,,四边形OZ1ZZ2为平行四边形,向量与复数z1+z2对应,向量与复数z1-z2对应.知识点3.复数的乘、除法则复数乘法的运算法则和运算律1.复数的乘法法则设z1=a+bi,z2=c+di(a,b,c,d∈R)是任意两个复数,则z1·z2=(a+bi)(c+di)=(ac-bd)+(ad+bc)i.2.复数乘法的运算律对任意复数z1,z2,z3∈C,有交换律z1z2=z2z1结合律(z1z2)z3=z1(z2z3)乘法对加法的分配律z1(z2+z3)=z1z2+z1z3复数除法的法则设z1=a+bi,z2=c+di(a,b,c,d∈R,且c+di≠0)是任意两个复数,则==+i(c+di≠0).知识点4.复数的三角表示三角表示及相关概念一般地,任何一个复数z=a+bi,都可以表示为 r=(cos+icos)的形式
其中,r是复数z的模;是以x轴的非负半轴为始,向量所在射线(射线OZ)为终边的角,叫做复数z=a+bi的辐角.r(cos+isin)叫做复数z=a+bi的三角表示式,简称三角形式。为了与三角形式区分开来,a+bi叫做复数的代数表示式,简称代数形式。
(2)规定:在0≤<2π范围内的辐角的值为辐角的主值.通常记作argz,即0≤argz<2π.复数乘、除运算的三角表示及其几何意义根据复数的乘法法则以及两角和的正弦、余弦公式,可以得到,
=(cos+isin)·(cos+isin)
=(cos+isin)(cos+isin)
=[(coscos-sinsin)]
=[cos(+)+isin(+)
则
(cos+isin)·(cos+isin)
=[cos(+)+isin(+)]
这就是说,两个复数相乘,积的模等于各复数的模的积,积的辐角等于各复数的辐角的和.
复数除法运算的三角表示
设=(cos+isin),=(cos,+isin),且≠.因为
(cos+isin)·[cos(-)+isin(-)]=(cos+isin),
所以根据复数除法的定义,有,
[cos(-)+isin(-]
这就是说,两个复数相除,商的模等于被除数的模除以除数的模所得的商,商的辐角等于被除数的辐角减去除数的辐角所得的差.