高考数学(理数)一轮复习检测卷:11.2《参数方程》 (学生版)
展开限时规范训练(限时练·夯基练·提能练)
A级 基础夯实练
1.已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,圆C的极坐标方程为ρ=4cos θ-6sin θ,直线l的参数方程为(t为参数).
(1)写出圆C的直角坐标方程,并求圆心的坐标与半径;
(2)若直线l与圆C交于不同的两点P,Q,且|PQ|=4,求直线l的斜率.
2.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cos θ,θ∈.
(1)求C的参数方程;
(2)设点D在C上,C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,确定D的坐标.
3.在平面直角坐标系xOy中,曲线C1的普通方程为x2+y2+2x-4=0,曲线C2的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1,C2的极坐标方程;
(2)求曲线C1与C2交点的极坐标,其中ρ≥0,0≤θ<2π.
4.在平面直角坐标系xOy中,圆C的参数方程为(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l上两点M,N的极坐标分别为(2,0),.
(1)设P为线段MN的中点,求直线OP的直角坐标方程;
(2)判断直线l与圆C的位置关系.
B级 能力提升练
5.在平面直角坐标系xOy中,圆C的参数方程为(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线l的极坐标方程为ρcos=-1.
(1)求圆C的普通方程和直线l的直角坐标方程;
(2)设直线l与x轴,y轴分别交于A,B两点,P是圆C上任一点,求A,B两点的极坐标和△PAB面积的最小值.
6.已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,圆C的极坐标方程为ρ=asin θ,直线l的参数方程为(t为参数).
(1)若a=2,M是直线l与x轴的交点,N是圆C上一动点,求|MN|的最小值;
(2)若直线l被圆C截得的弦长等于圆C的半径的倍,求a的值.
7.在直角坐标系xOy中,曲线C1:(t为参数,t≠0,其中0≤α<π).在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sin θ,C3:ρ=2cos θ.
(1)求C2与C3交点的直角坐标;
(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.
8.在平面直角坐标系中,曲线C的参数方程为(θ为参数),直线l1的方程为kx-y+k=0,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l2的极坐标方程为cos θ-2sin θ=.
(1)写出曲线C的普通方程和直线l2的直角坐标方程;
(2)若l1与C交于不同的两点M,N,MN的中点为P,l1与l2的交点为Q,l1恒过点A,求|AP|·|AQ|.
高考数学(理数)一轮复习检测卷:8.4《椭圆》 (学生版): 这是一份高考数学(理数)一轮复习检测卷:8.4《椭圆》 (学生版),共4页。试卷主要包含了已知椭圆C等内容,欢迎下载使用。
高考数学(理数)一轮复习检测卷:8.2《圆的方程》 (学生版): 这是一份高考数学(理数)一轮复习检测卷:8.2《圆的方程》 (学生版),共2页。试卷主要包含了以线段AB,已知圆C,已知点P,圆C等内容,欢迎下载使用。
高考数学(理数)一轮复习检测卷:1.1《集合》 (学生版): 这是一份高考数学(理数)一轮复习检测卷:1.1《集合》 (学生版)