专题2.1 相交线与平行线章末达标检测卷2021-2022学年七年级下册数学举一反三系列(人教版)
展开
这是一份专题2.1 相交线与平行线章末达标检测卷2021-2022学年七年级下册数学举一反三系列(人教版),文件包含专题21相交线与平行线章末达标检测卷人教版解析版doc、专题21相交线与平行线章末达标检测卷人教版原卷版doc等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
专题2.1 相交线与平行线章末达标检测卷
参考答案与试题解析
一.选择题(共10小题,满分30分,每小题3分)
1.(2019秋•孟津县期中)下列语句不是命题的是( )
A.两点之间,线段最短
B.不平行的两条直线有一个交点
C.x与y的和等于0吗?
D.两个锐角的和一定是直角
【分析】可以判定真假的语句是命题,根据其定义对各个选项进行分析,从而得到答案.
【解答】解:A、两点之间,线段最短,是命题;
B、不平行的两条直线有一个交点,是命题;
C、x与y的和等于0吗?不是命题;
D、两个锐角的和一定是直角,是命题;
故选:C.
【点评】本题考查了命题与定理.能够判断真假的陈述句叫做命题.
2.(3分)(2018秋•江汉区期末)如图,直线a,b相交于点O,因为∠1+∠2=180°,∠3+∠2=180°,所以∠1=∠3,这是根据( )
A.同角的余角相等 B.等角的余角相等
C.同角的补角相等 D.等角的补角相等
【分析】根据题意知∠1与∠3都是∠2的补角,根据同角的补角相等,得出∠1=∠3.
【答案】解:∵∠1与∠3都是∠2的补角,
∴∠1=∠3(同角的补角相等).
故选:C.
【点睛】本题考查了补角的知识,注意同角或等角的补角相等,在本题中要注意判断是“同角”还是“等角”.
3.(3分)(2018秋•北碚区期末)如图,P是直线l外一点,A,B,C三点在直线l上,且PB⊥l于点B,∠APC=90°,则下列结论:①线段AP是点A到直线PC的距离;②线段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB最短;④线段PC的长是点P到直线l的距离,其中,正确的是( )
A.②③ B.①②③ C.③④ D.①②③④
【分析】根据“从直线外一点到这条直线上各点所连的线段中,垂线段最短”;“从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”进行判断,即可解答.
【答案】解:①线段AP是点A到直线PC的距离,错误;
②线段BP的长是点P到直线l的距离,正确;
③PA,PB,PC三条线段中,PB最短,正确;
④线段PC的长是点P到直线l的距离,错误,
故选:A.
【点睛】此题主要考查了垂线的两条性质:①从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中,垂线段最短.
4.(3分)(2019春•淮北期末)如图,直线AB,CD,MN两两相交.则图中同旁内角的组数有( )
A.8组 B.6组 C.4组 D.2组
【分析】截线AB、CD与被截线MN所截,可以得到两对同旁内角,同理AB、MN被CD所截,CD、MN被AB所截,又可以分别得到两对.
【答案】解:根据同旁内角的定义,直线AB、CD被直线MN所截可以得到两对同旁内角,
同理:直线AB、MN被直线CD所截,可以得到两对,
直线CD、MN被直线AB所截,可以得到两对.
因此共6对同旁内角.
故选:B.
【点睛】本题考查同旁内角的定义,同旁内角就是在截线的同一侧,在两条被截线的内部的两个角,是需要熟记的内容.
5.(3分)(2019春•孝义市期末)如图,在一张半透明的纸上画一条直线l,在直线l外任取一点A、折出过点A且与直线l垂直的直线.这样的直线只能折出一条,理由是( )
A.连接直线外一点与直线上各点的所有线段中,垂线段最短
B.两点之间线段最短
C.在平面内,过一点有且只有一条直线与已知直线垂直
D.经过直线外一点有且只有一条直线与已知直线平行
【分析】在平面内,过一点有且只有一条直线与已知直线垂直,根据垂线的性质可得答案.
【答案】解:这样的直线只能折出一条,理由是:在平面内,过一点有且只有一条直线与已知直线垂直,
故选:C.
【点睛】本题考查了垂线,利用了垂线的性质:过一点有且只有一条直线与已知直线垂直.
6.(3分)(2019春•肥城市期末)如图,下列条件:①∠1=∠2;②∠4=∠5;③∠1=∠3;④∠6=∠1+∠2,其中能判断直线l1∥l2的有( )
A.5个 B.4个 C.3个 D.2个
【分析】根据平行线的判定定理,对各小题进行逐一判断即可.
【答案】解:①∵∠1=∠2不能得到l1∥l2,故本条件不合题意;
②∵∠4=∠5,∴l1∥l2,故本条件符合题意;
③∵∠1=∠3,∴l1∥l2,故本条件符合题意;
④∵∠6=∠2+∠3=∠1+∠2,∴∠1=∠3,∴l1∥l2,故本条件符合题意.
故选:C.
【点睛】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.
7.(3分)(2018秋•汾阳市期末)如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点O与点G,OP平分∠EOB,若∠EOP=65°,则∠DGF的度数为( )
A.50° B.60° C.65° D.75°
【分析】依据OP平分∠EOB,即可得到∠BOG=2∠EOP=2×65°=130°,再根据平行线的性质,即可得出∠DGF+∠BOE=180°,进而得到∠DGF=180°﹣130°=50°.
【答案】解:∵OP平分∠EOB,
∴∠BOG=2∠EOP=2×65°=130°,
又∵AB∥CD,
∴∠DGF+∠BOE=180°,
∴∠DGF=180°﹣130°=50°,
故选:A.
【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.
8.(3分)(2019春•相城区期末)如图,∠ABC=∠ACB,AD、BD、CD分别平分∠EAC、∠ABC和∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠BDC=∠BAC;④∠ADC=90°﹣∠ABD.其中正确的结论是( )
A.①②③ B.②③④ C.①③④ D.①②④
【分析】根据平行线的判定和性质,角平分线的定义一一判断即可.
【答案】解:∵∠EAC=∠ABC+∠ACB,
∵∠ABC=∠ACB,∠EAD=∠DAC,
∴∠EAD=∠ABC,
∴AD∥BC,故①正确,
∴∠ADB=∠DBC,
∵∠ABD=∠DBC,
∴∠ACB=∠ABC=2∠DBC=2∠ADB,故②正确,
∵∠ADC=180°﹣(∠DAC+∠DCA)
=180°﹣(∠EAC+∠FCA)
=180°﹣(∠ABC+∠ACB+∠ABC+∠BAC)
=90°﹣ABC
=90°﹣∠ABD,故④正确,
无法判定③正确,
故选:D.
【点睛】本题考查平行线的判定和性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
9.(3分)(2019春•桂平市期末)如图,AB∥DC,ED∥BC,AE∥BD,那么图中和△ABD面积相等的三角形(不包括△ABD)有( )
A.1个 B.2个 C.3个 D.4个
【分析】根据两平行直线之间的距离相等,再根据等底等高的三角形的面积相等,找出与△ABD等底等高的三角形即可.
【答案】解:∵AB∥DC,
∴△ABC与△ABD的面积相等,
∵AE∥BD,
∴△BED与△ABD的面积相等,
∵ED∥BC找不到与△ABD等底等高的三角形,
∴和△ABD的面积相等的三角形有△ABC、△BDE,共2个.
故选:B.
【点睛】本题主要考查了平行线间的距离相等,等底等高的三角形面积相等的性质,找出等底等高的三角形是解题的关键.
10.(3分)(2019春•嘉兴期中)如图,已知DC∥FP,∠1=∠2,∠FED=32°,∠AGF=76°,FH平分∠EFG,则∠PFH的度数是( )
A.54° B.44° C.32° D.22°
【分析】由DC∥FP知∠3=∠2=∠1,可得DC∥AB,利用平行线的判定得到AB∥PF∥CD,根据平行线的性质得到∠AGF=∠GFP,∠DEF=∠EFP,然后利用已知条件即可求出∠PFH的度数.
【答案】解:∵DC∥FP,
∴∠3=∠2,
又∵∠1=∠2,
∴∠3=∠1,
∴DC∥AB;
∵DC∥FP,DC∥AB,∠FED=32°,
∴∠EFP=∠FED=32°,AB∥FP,
又∵∠AGF=76°,
∴∠GFP=∠AGF=76°,
∴∠GFE=∠GFP+∠EFP=76°+32°=108°,
又∵FH平分∠GFE,
∴∠GFH=∠GFE=54°,
∴∠PFH=∠GFP﹣∠GFH=76°﹣54°=22°.
故选:D.
【点睛】此题主要考查了平行线的性质与判定,首先利用同位角相等两直线平行证明直线平行,然后利用平行线的性质得到角的关系解决问题.
二.填空题(共6小题,满分18分,每小题3分)
11.(3分)(2019春•包河区期末)如图,已知,AB、CD、EF相交于O点,∠1=35°,∠2=35°,则∠3的度数是 110° .
【分析】依据AB、CD、EF相交于O点,∠1=35°,∠2=35°,即可得到∠BOC=180°﹣∠1﹣∠2=110°,再根据对顶角相等,即可得出∠3=∠BOC=110°.
【答案】解:∵AB、CD、EF相交于O点,∠1=35°,∠2=35°,
∴∠BOC=180°﹣∠1﹣∠2=110°,
又∵∠3与∠BOC是对顶角,
∴∠3=∠BOC=110°,
故答案为:110°.
【点睛】本题考查了对顶角相等的性质,平角的定义,准确识图是解题的关键.
12.(3分)(2019春•上杭县期末)已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是如图中的图 乙 (填甲或乙),你选择的依据是 在平面内,过一点有且只有一条直线与已知直线垂直 (写出你学过的一条公理)
【分析】根据题意画出图形即可.
【答案】解:根据题意可得图形,依据是在平面内,过一点有且只有一条直线与已知直线垂直;
故答案为:乙;在平面内,过一点有且只有一条直线与已知直线垂直.
【点睛】此题主要考查了垂线,关键是掌握垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.
13.(3分)(2019春•闵行区校级期末)如图,与∠1构成内错角的角是 ∠DEF或∠DEC .
【分析】根据内错角的定义即可判断,注意有两解.
【答案】解:∠1与∠DEF可以看成直线AB与直线EF被直线DE所截的内错角,
∠1与∠DEC可以看成直线AB与直线AC被直线DE所截的内错角,
故答案为∠DEF或∠DEC.
【点睛】本题看成内错角、同位角、同旁内角等知识,解题的关键是理解内错角的定义,属于基础题.
14.(3分)(2018秋•襄汾县期末)如图,直线a∥b,直角角板的直角顶点C在直线b上,若∠1=32°,则∠2= 58° .
【分析】由平行线a∥b,其性质得∠1=∠3,∠2=∠4,再由平角的定义得3+∠ABC+∠4=180°,直角,角的和差和等量代换求得∠2=58°.
【答案】解:如图所示:
∵a∥b,
∴∠1=∠3,∠2=∠4,
又∵∠1=32°,
∴∠3=32°,
又∵∠3+∠ABC+∠4=180°,
∠ABC=90°,
∴∠3+∠4=90°,
∴∠4=58°,
∴∠2=58°.
故答案为58°.
【点睛】本题综合考查了平行线的性质,平角的定义,角的和差和等量代换等知识,重点掌握平行线的判定.
15.(3分)(2019春•张店区期末)如图,点E是AD延长线上一点,∠B=30°,∠C=120°.如果添加一个条件,使BC∥AD,则可添加的条件为 ∠1=30°或∠2=120° .(只填一个即可)
【分析】根据平行线的判定即可解决问题.
【答案】解:可以添加:∠1=30°或∠C=120°即可.
理由:∵∠1=30°,∠B=30°,
∴∠B=∠1,
∴BC∥AE.
∵∠C=∠2=120°,
∴BC∥AE.
故答案为:∠1=30°或∠2=120°.
【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.
16.(3分)(2019春•锦江区期末)如图,m∥n,A,B为直线m,n上的两点,且AB⊥BC,∠BAC=28°,则∠1与∠2的度数之和为 62° .
【分析】如图,作CE∥直线m,首先证明∠1+∠2=∠ACB,求出∠ACB即可
【答案】解:如图,作CE∥直线m,
∵m∥n,
∴CE∥n,
∴∠1=∠ACE,∠2=∠ECB,
∴∠ACB=∠1+∠2,
∵AB⊥BC,
∴∠ABC=90°,
∵∠BAC=28°,
∴∠ACB=62°,
∴∠1+∠2=62°.
故答案为62°.
【点睛】本题考查平行线的性质,垂线的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
三.解答题(共6小题,满分52分)
17.(8分)(2018秋•潜江期末)如图,直线AB和CD相交于点O,∠COE与∠AOC互为余角,∠AOF:∠FOD=2:3,∠AOC=30°,求∠COE,∠AOF的度数.
【分析】首先根据∠AOF:∠FOD=2:3,设∠AOF=2x°,∠FOD=3x°,根据平角的定义列方程可得x的值,从而得∠AOF的度数,根据∠COE与∠AOC互为余角进而得出∠COE的度数.
【答案】解:设∠AOF=2x°,∠FOD=3x°,
∵∠AOC=30°,
∴2x+3x+30=180,
x=30°,
∴∠AOF=60°,
∵∠COE与∠AOC互为余角,
∴∠COE+∠AOC=90°,
∵∠AOC=30°,
∴∠COE=60°.
【点睛】此题主要考查了平角的定义,余角的定义及角的和与差,关键是正确理清图中角之间的和差关系.
18.(8分)(2015秋•北仑区期末)如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.
(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;
(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.
【分析】(1)由两点之间线段最短可知,连接AD、BC交于H,则H为蓄水池位置;
(2)根据垂线段最短可知,要做一个垂直EF的线段.
【答案】解:(1)∵两点之间线段最短,
∴连接AD,BC交于H,则H为蓄水池位置,它到四个村庄距离之和最小.
(2)过H作HG⊥EF,垂足为G.
“过直线外一点与直线上各点的连线中,垂线段最短”是把河水引入蓄水池H中开渠最短的根据.
【点睛】本题考查了线段和垂线的性质在实际生活中的运用.
19.(8分)(2019春•市北区期末)已知:如图,AB∥CD,∠B=∠D.点EF分别在AB、CD上.连接AC,分别交DE、BF于G、H.
求证:∠1+∠2=180°
证明:∵AB∥CD,
∴∠B= ∠BFC . 两直线平行,内错角相等
又∵∠B=∠D,
∴ ∠D = ∠DFC .(等量代换)
∴ DE ∥ BF . 同位角相等,两直线平行
∴∠l+∠2=180°. 两直线平行,同旁内角互补
【分析】根据平行线的判定和性质定理即可得到结论.
【答案】证明:∵AB∥CD,
∴∠B=∠BFC.(两直线平行,内错角相等)
又∵∠B=∠D,
∴∠D=∠DFC.(等量代换)
∴ED∥BF.(同位角相等,两直线平行)
∴∠l+∠2=180°.(两直线平行,同旁内角互补).
故答案为:∠BFC,∠BFC,两直线平行,内错角相等,∠D,ED,BF,同位角相等,两直线平行,两直线平行,同旁内角互补
【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的性质和判定定理是解题的关键.
20.(8分)(2019春•滦州市期末)已知:如图,直线AB,CD与直线EF分别相交于点M和N,MP平分∠AMF,若NQ平分∠END,若∠AME=∠DNF,请对MP∥NQ说明理由.
【分析】由等角的补角相等易证AB∥CD,则有∠AMN=∠DNM,进而由角平分线得出∠PMN=∠QNM,由内错角相等两直线平行即可得出结论.
【答案】证明:∵∠AME=∠DNF,∠AME+∠AMN=∠DNF+∠DNM=180°,
∴∠AMN=∠DNM,
又∵,,
∴∠PMN=∠QNM,
∴MP∥NQ.
【点睛】本题考查了平行线的判定与性质,先根据题意得出AB∥CD是解答此题的关键.
21.(10分)(2019春•韶关期末)如图,∠AGF=∠ABC,∠1+∠2=180°.
(1)试判断BF与DE的位置关系,并说明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度数.
【分析】(1)由于∠AGF=∠ABC,可判断GF∥BC,则∠1=∠3,由∠1+∠2=180°得出∠3+∠2=180°判断出BF∥DE;
(2)由BF∥DE,BF⊥AC得到DE⊥AC,由∠2=150°得出∠1=30°,得出∠AFG的度数
【答案】解:(1)BF∥DE,理由如下:
∵∠AGF=∠ABC,
∴GF∥BC,
∴∠1=∠3,
∵∠1+∠2=180°,
∴∠3+∠2=180°,
∴BF∥DE;
(2)∵BF∥DE,BF⊥AC,
∴DE⊥AC,
∵∠1+∠2=180°,∠2=150°,
∴∠1=30°,
∴∠AFG=90°﹣30°=60°.
【点睛】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等,同旁内角互补.
22.(10分)(2019春•安庆期末)小明同学在完成第10章的学习后,遇到了一些问题,请你帮助他.
(1)图1中,当AB∥CD,试说明∠AEC=∠BAE+∠DCE.
(2)图2中,若∠AEC=∠BAE+∠DCE,则AB∥CD吗?请说明理由.
(3)图3中,AB∥CD,若∠BAE=x°,∠AEF=y°,∠EFD=z°,∠FDC=m°,则m= x+z﹣y .(直接写出结果,用含x,y,z的式子表示)
【分析】(1)过E作EM∥AB,求出AB∥CD∥EM,根据平行线的性质得出∠BAE=∠AEM,∠DCE=∠CEM,即可得出答案;
(2)过E作EM∥AB,根据EM∥AB得出∠BAE=∠AEM,求出∠DCE=∠CEM,根据平行线的判定得出EM∥CD即可;
(3)过E作EM∥AB,过F作FN∥AB,求出AB∥CD∥EM∥FN,根据平行线的性质得出∠BAE=∠AEM,∠FEM=∠EFN,∠DFN=∠CDF,求出∠BAE+∠EFD=∠AEF+∠CDF,代入即可得出答案.
【答案】解:(1)
过E作EM∥AB,
∵AB∥CD,
∴AB∥CD∥EM,
∴∠BAE=∠AEM,∠DCE=∠CEM,
∴∠AEC=∠AEM+∠CEM=∠BAE+∠DCE;
(2)
过E作EM∥AB,
∵EM∥AB,
∴∠BAE=∠AEM,
∵∠AEC=∠BAE+∠DCE,
∴∠DCE=∠CEM,
∴EM∥CD,
∵AB∥EM,
∴AB∥CD;
(3)
过E作EM∥AB,过F作FN∥AB,
∵AB∥CD,
∴AB∥CD∥EM∥FN,
∴∠BAE=∠AEM,∠FEM=∠EFN,∠DFN=∠CDF,
∴∠BAE+∠EFN+∠DFN=∠AEM+∠FEM+∠CDF,
∴∠BAE+∠EFD=∠AEF+∠CDF,
∵∠BAE=x°,∠AEF=y°,∠EFD=z°,∠FDC=m°,
∴x+z=y+m,
∴m=x+z﹣y,
故答案为:x+z﹣y.
【点睛】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.
相关试卷
这是一份专题2.7 分式章末达标检测卷-2021-2022学年八年级数学上册举一反三系列(人教版),文件包含专题27分式章末达标检测卷人教版解析版docx、专题27分式章末达标检测卷人教版原卷版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
这是一份专题2.1 三角形章末达标检测卷-2021-2022学年八年级数学上册举一反三系列(人教版),文件包含专题21三角形章末达标检测卷人教版解析版docx、专题21三角形章末达标检测卷人教版原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
这是一份专题2.8 数据的收集、整理与描述章末达标检测卷-2021-2022学年七年级下册数学举一反三系列(人教版),文件包含专题28数据的收集整理与描述章末达标检测卷人教版解析版doc、专题28数据的收集整理与描述章末达标检测卷人教版原卷版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。