初中数学人教版九年级上册21.2.2 公式法教案配套ppt课件
展开
这是一份初中数学人教版九年级上册21.2.2 公式法教案配套ppt课件,共26页。PPT课件主要包含了学习目标,目录页,新课导入,讲授新课,移项得,配方得,因此方程无实数根,用计算器求得,当堂练习,课堂小结等内容,欢迎下载使用。
1.经历求根公式的推导过程.(难点)2.会用公式法解简单系数的一元二次方程.(重点)
配方法解一元二次方程的一般步骤: (1)移项;(2)二次项系数化为1;(3)配方;(4)开平方.
任何一个一元二次方程都可以写成一般形式 ax2+bx+c=0 能否也用配方法得出它的解呢?
用配方法解一般形式的一元二次方程 ax2+bx+c=0 (a≠0).
方程两边都除以a
问题:接下来能用直接开平方解吗?
一元二次方程的求根公式
∵a ≠0,4a2>0,
当△=b2-4ac ≥时,
当△=b2-4ac <0时,
而x取任何实数都不能使上式成立.
由上可知,一元二次方程ax2+bx+c=0 (a≠0)的根由方程的系数a,b,c确定.因此,解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0 (a≠0) ,当△=b2-4ac ≥0 时,将a,b,c 代入式子 就得到方程的根,这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法,由求根公式可知,一元二次方程最多有两个实数根.
例1 用公式法解方程 5x2-4x-12=0
解:∵a=5,b=-4,c=-12,
△=b2-4ac=(-4)2-4×5×(-12)=256>0.
这里的a、b、c的值是什么?
例3 解方程: (精确到0.001).
例4 解方程:4x2-3x+2=0
因为在实数范围内负数不能开平方,所以方程无实数根.
练一练: 用公式法解下列方程:
解:a=1,b=-4,c=-7 Δ= b2-4ac=(-4)2-4×1×(-7) =44>0
(3)5x2-3x=x+1; (4)x2+17=8x.
解:方程化为5x2-4x-1=0 a=5,b=-4,c=-1 Δ= b2-4ac=(-4)2-4×5×(-1) =36>0
解:方程化为x2-8x+17=0 a=1,b=-8,c=17 Δ= b2-4ac =(-8)2-4×1×17 =-4<0
1.变形: 化已知方程为一般形式; 2.确定系数:用a,b,c写出各项系数;3.计算: △=b2-4ac的值; 4.判断:若△=b2-4ac ≥0,则利用求根公式求出; 若△=b2-4ac0, 即 x1 = -9, x2 = 2 .
2. 解方程(x - 2) (1 - 3x) = 6.
解:去括号 ,得 x –2 - 3x2 + 6x = 6, 化简为一般式 3x2 - 7x + 8 = 0, 这里 a = 3, b = -7 , c = 8. ∵b2 - 4ac=(-7 )2 – 4 × 3 × 8 = 49–96 = - 47 < 0, ∴原方程没有实数根.
3.已知4个数据:- ,2 ,a,b,其中a,b是方程x2-2x-1=0的两个根,则这4个数据的中位数是( )A.1 B. C.2 D.
4.在等腰△ABC 中,三边分别为a,b,c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求△ABC 的周长.
解:关于x的方程x2+(b+2)x+6-b=0有两个相等的实 数根,
所以Δ=b2-4ac=(b-2)2-4(6-b)=b2+8b-20=0.
所以b=-10或b=2.
将b=-10代入原方程得x2-8x+16=0,x1=x2=4;
将b=2代入原方程得x2+4x+4=0,x1=x2=-2(舍去);
所以△ABC 的三边长为4,4,5,其周长为4+4+5=13.
一化(一般形式);二定(系数值);三求( Δ值); 四判(方程根的情况);五代(求根公式计算).
相关课件
这是一份数学九年级上册21.2.2 公式法教学ppt课件,共1页。
这是一份数学九年级上册21.2.2 公式法课文配套ppt课件,共33页。PPT课件主要包含了学习目标,复习引入,合作探究,移项得,配方得,特别提醒,因此方程无实数根,典例精析,用计算器求得,要点归纳等内容,欢迎下载使用。
这是一份初中人教版第二十一章 一元二次方程21.2 解一元二次方程21.2.2 公式法课前预习课件ppt,共12页。PPT课件主要包含了配方得,方程无实数根,小结与归纳,点击显示答案,巩固与复习等内容,欢迎下载使用。