终身会员
搜索
    上传资料 赚现金
    第1讲 集合的概念-【新教材】2022新高一同步(初升高)衔接讲义(原卷+解析)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 第1讲.集合的概念解析版.docx
    • 第1讲.集合的概念原版.docx
    第1讲 集合的概念-【新教材】2022新高一同步(初升高)衔接讲义(原卷+解析)01
    第1讲 集合的概念-【新教材】2022新高一同步(初升高)衔接讲义(原卷+解析)02
    第1讲 集合的概念-【新教材】2022新高一同步(初升高)衔接讲义(原卷+解析)03
    第1讲 集合的概念-【新教材】2022新高一同步(初升高)衔接讲义(原卷+解析)01
    第1讲 集合的概念-【新教材】2022新高一同步(初升高)衔接讲义(原卷+解析)02
    第1讲 集合的概念-【新教材】2022新高一同步(初升高)衔接讲义(原卷+解析)03
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第1讲 集合的概念-【新教材】2022新高一同步(初升高)衔接讲义(原卷+解析)

    展开

    第1讲 集合的概念

    一、集合的有关概念

    1.     集合的概念一般地,我们把研究对象统称为元素,一些元素组成的总体集合,简称              .

     

    1.     表示方法:一般用大写字母或大括号表示集合,用小写字母 示集合中的元素.

     

    1.     集合相等:构成两个集合的元素完全一样.

     

    1.     集合元素的特性确定性互异性无序性.

    确定性:给定一个集合,那么任何一个元素在或不在这个集合就确定了.

    例如:“之间的偶数”构成集合,是这个集合的元素,而就不 是它的元素;“较大的数”、“漂亮的花”不能构成集合,因为组成它的元素是不确定的.

    互异性:一个集合中的元素是互不相同的,即集合中的元素不重复出现.

    例如:方程的解构成的集合是,而不是.

    无序性:集合中的元素没有固定的顺序,元素可以任意排列.

    例如:是同一个集合.

     

    1.     元素与集合的关系:(分“属于”与“不属于”两种)

    ①如果是集合的元素,就说属于集合,记作

    ②如果不是集合的元素,就说不属于集合,记作.

     

    1.     集合的分类

     

    1.     常见数集的写法

    数集

    自然数集

    正整数集

    整数集

    有理数集

    实数集

    符号

     

    例1.下列指定的对象能构成集合的是          .

    ①大于2的整数;②所有的正小数;③所有的小正数;④的近似值;⑤高一年级优秀的学生;⑥方程的解;⑦个数

    【答案】①②⑥

    【解析】①②⑥中指定的对象满足集合元素的三个性质:确定性,互异性,无序性,能构成集合;③④⑤中指定的对象不满足集合元素的确定性,⑦中指定的对象不满足集合元素的互异性,不能构成集合.

     

    例2.用“”或“”填空.

                            

                        .

    【答案】①.

     

    例3.(1)已知三个实数构成一个集合,求应该满足的条件.

    (2)已知集合的元素为,若,求实数的值.

    【答案】(1);(2).

    【解析】(1)由集合元素的互异性可得:,解得

    (2)若,则,解得.

     

    二、集合的表示

    1.     列举法把集合中的元素一一列举出来, 并用括号“”括起来表示集合的方法.

    说明:

     书写时,元素与元素之间用逗号分开;

     一般不必考虑元素之间的顺序

     ③集合中的元素可以是数,点,代数式等;

     列举法可表示有限集,也可以表示无限集.当元素个数比较少时用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示

     对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,自然数集用列举法表示为.

     

    例4.用列举法表示下列集合:

    ①小于4的正偶数组成的集合;

    ②绝对值小于5的所有整数的集合;

    ③小于6的所有自然数的集合;

    ④方程的所有实数根组成的集合;

    ⑤方程组的实数解组成的集合.

    【答案】①;②;③;④;⑤.

     

    1.     描述法用集合所含元素共同特征表示集合的方法,称为描述法.

    一般格式:,例如:.

    说明:①弄清集合代表元素是数还是点、还是集合或其他形式?

    例如:是两个不同的集合.

     ②只要不引起误解,集合的代表元素也可省略,例如:即代表整数集.

     

     

    例5.用描述法表示下列集合:

    ①由大于2小于等于26的所有奇数组成的集合;

    不等式的所有解组成的集合

    ③抛物线上的点组成的集合.

    【答案】①;②;③.

     

     

    例6.集合,且,的值.

    【答案】.

    【解析】,解得.当时,中元素不满足互异性,故舍去,所以.

    例7.已知,若集合中恰有4个元素,则(   

    1.        B.       C.        D.

    【答案】B.

    【解析】若集合中恰有4个元素,则这4个元素为3,4,5,6,所以.

     

    例8.已知集合.

    (1),求的取值范围;

    (2)中至多一个元素,求的取值范围.

    【答案】(1);(2).

    【解析】(1),则方程无解,所以,解得

    (2)当时,集合中只有一个元素,满足题意;

    时,若要使中至多一个元素,则,解得.

    综上,的取值范围为

     

    例9.设实数集满足下面两个条件:①;②若,则.

    (1)求证:若,则

    (2),则在中必含有其它两个数,试求出这两个数;

    (3)求证:集合中至少有三个不同的元素.

    【答案】(1)见解析;(2);(3)见解析.

    【解析】(1)证明:若,则,则,即

    (2)若,则,则

    (3)由(1)知.

    下证:三者两两互不相等.

    ①若,则,无实数根,故

    ②若,则,无实数根,故

    ③若,则,无实数根,故.

    综上所述,集合中至少有三个不同的元素.

    跟踪训练

    1.     下列说法正确的个数为(  

    ①集合与集合表示同一集合;②集合与集合 不是同一集合;③集合与集合是同一个集合;④集合和集合是同一集合;⑤集合和集合是同一集合;⑥方程的解集为.

    A.1个             B.2个             C.3个            D.4个

    答案C

    【解析】正确正确,错误,前者是数集,后者是点集;正确,集合元素具有无序性;错误,两者均表示点集,但是点的坐标不同;错误,方程的解为,故解集为.综上,正确个数为3个,选C.

     

    1.     用列举法表示下列集合:

    .

    【答案】.

    【解析】对于①②要使,则,对应的中元素为中元素为,所以表示上的点集,只有两个点,所以.

     

     

    1.     用描述法表示下列集合:

    ①正偶数集;

    ②大于2的实数;

    ③100以内能被3整除的正整数.

    【答案】①.

     

    1.     已知,则的值为(   

    A.0           B.1           C.2           D.3

    【答案】A

     

    1.     已知集合,那么(   
    1.               B.             C.           D.  

    【答案】A

     

    1.     给出下列说法:

    ①集合用列举法表示为;②实数集可以表示为;③方程组的解组成的集合为

    其中不正确的有          .(把所有不正确的说法的序号都填上)

    答案①②③

    【解析】①错误,②错误,正确的表示为③方程组的解组成的集合正确的表示为.

     

    1.     若集合,则实数的取值范围是          .

    答案

    解析若集合,则不等式无解.

    时,原不等式无解,故符合题意;

    时,无实数解,所以,解得.

    综上所述,的取值范围是.

    1.     设集合是两个非空数集,定义集合,若,则中元素的个数为(   

      A.9               B.8               C.7              D.6

    【答案】B

    【解析】根据题意,,选B.

     

    1.     定义集合运算:.设,则集合中所有元素之和为(   

     A.0                B.2               C.3              D.6          

    【答案】D

    【解析】根据题意,,其所有元素之和为6,选D.

     

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第1讲 集合的概念-【新教材】2022新高一同步(初升高)衔接讲义(原卷+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map