所属成套资源:高一上学期期末数学培优对点题组专题突破(人教A版2019必修第一册)
- 专题17 函数奇偶性的应用-2021-2022学年高一数学培优对点题组专题突破(人教A版2019必修第一册) 试卷 0 次下载
- 专题18 函数单调性和奇偶性的综合应用-2021-2022学年高一数学培优对点题组专题突破(人教A版2019必修第一册) 试卷 0 次下载
- 专题20 幂函数-2021-2022学年高一数学培优对点题组专题突破(人教A版2019必修第一册) 试卷 0 次下载
- 专题21 指数-2021-2022学年高一数学培优对点题组专题突破(人教A版2019必修第一册) 试卷 0 次下载
- 专题22 指数函数的概念-2021-2022学年高一数学培优对点题组专题突破(人教A版2019必修第一册) 试卷 0 次下载
专题19 函数的单调性、奇偶性、最值问题-2021-2022学年高一数学培优对点题组专题突破(人教A版2019必修第一册)
展开
这是一份专题19 函数的单调性、奇偶性、最值问题-2021-2022学年高一数学培优对点题组专题突破(人教A版2019必修第一册),文件包含专题19函数的单调性奇偶性最值问题-培优对点题组专题突破解析版doc、专题19函数的单调性奇偶性最值问题-培优对点题组专题突破原卷版doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
专题19 函数的单调性、奇偶性、最值问题1.已知奇函数f(x)的定义域为(-∞,0)∪(0,+∞),且不等式>0对任意两个不相等的正实数x1,x2都成立,则下列不等式中,正确的是( )A.f(-5)>f(3)B.f(-5)<f(3)C.f(-3)>f(-5)D.f(-3)<f(-5)2.设f(x)是R上的偶函数,且在(0,+∞)上是减函数,若x1<0且x1+x2>0,则( )A.f(-x1)>f(-x2)B.f(-x1)=f(-x2)C.f(-x1)<f(-x2)D.f(-x1)与f(-x2)的大小不确定3.已知函数f(x)是奇函数,且在(-∞,+∞)上为增函数,若x,y满足等式f(2x2-4x)+f(y)=0,则4x+y的最大值是( )A.10B.-6C.8D.94.已知f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实根.现有四个说法:①若a>0,则不等式f(f(x))>x对一切x∈R成立;②若a<0,则必存在实数x0使不等式f(f(x0))>x0成立;③方程f(f(x))=x一定没有实数根;④若a+b+c=0,则不等式f(f(x))<x对一切x∈R成立.其中说法正确的个数是( )A.1B.2C.3D.45.区间[a,b]和[-b,-a]关于原点对称.(1)若f(x)为奇函数,且在[a,b]上有最大值M,则f(x)在[-b,-a]上有最________值________.(2)若f(x)为奇函数,f(x)+2在[a,b]上有最大值M,则f(x)+2在[-b,-a]上有最________值________.6.设定义在(-1,1)上的奇函数f(x)在[0,1)上单调递增,且有f(1-m)+f<0,求实数m的取值范围. 7.已知定义在R上的奇函数f(x),当x>0时,f(x)=-x2+2x.(1)求函数f(x)在R上的解析式;(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围. 8.定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a,b∈R,有f(a+b)=f(a)f(b).(1)求证:f(0)=1;(2)求证:对任意的x∈R,恒有f(x)>0;(3)求证:f(x)是R上的增函数. 9.若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f()=f(x)-f(y).(1)求f(1)的值;(2)若f(6)=1,解不等式f(x+3)-f()<2. 10.定义在(0,+∞)上的函数f(x)满足f(mn)=f(m)+f(n)(m,n>0),且当x>1时,f(x)>0.(1)求f(1)的值;(2)求证f=f(m)-f(n);(3)求证f(x)在(0,+∞)上是增函数;(4)若f(2)=1,解不等式f(x+2)-f(2x)>2;(5)比较f的大小. 11.若函数f(x)的定义域是R,且对任意x,y∈R,都有f(x+y)=f(x)+f(y)成立.(1)试判断f(x)的奇偶性;(2)若f(8)=4,求f(-)的值. 12.已知f(x)是定义在R上的不恒为0的函数,且对于任意的x,y∈R,有f(x·y)=xf(y)+yf(x).(1)求f(0),f(1)的值;(2)判断函数f(x)的奇偶性,并证明你的结论. 13.已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.(1)判断f(x)的奇偶性;(2)求证:f(x)是R上的减函数;(3)求f(x)在区间[-3,3]上的值域;(4)若对任意x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范围. 14.设f(x)是定义在[-1,1]上的奇函数,且对任意a,b∈[-1,1],当a+b≠0时,都有>0.(1)若a>b,试比较f(a)与f(b)的大小;(2)解不等式f(x-)<f(x-);(3)如果g(x)=f(x-c)和h(x)=f(x-c2)这两个函数的定义域的交集是空集,求c的取值范围. 15.已知函数f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,若对于任意的m,n∈[-1,1]有>0.(1)判断函数的单调性(不要求证明);(2)解不等式f<f(1-x);(3)若f(x)≤-2at+2对于任意的x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围. 16.已知函数f(x)=x-.(1)判断函数f(x)的奇偶性,并加以证明;(2)用定义证明函数f(x)在区间[1,+∞)上为增函数;(3)若函数f(x)在区间[2,a]上的最大值与最小值之和不小于,求a的取值范围. 17.已知函数f(x)=x2+2.(1)求函数f(x)的定义域和值域;(2)判断函数f(x)的奇偶性和单调性;(3)求函数f(x)在区间(-1,2]上的最大值和最小值. 18.已知函数f(x)=ax2+bx+1(a,b均为实数),x∈R,F(x)=(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的解析式;(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;(3)设mn<0,m+n>0,a>0,且f(x)为偶函数,判断F(m)+F(n)是否大于零,并说明理由. 19.已知函数f(x)=-(常数a>0).(1)设m·n>0,证明:函数f(x)在[m,n]上单调递增;(2)设0<m<n,且f(x)的定义域和值域都是[m,n],求n-m的最大值. 20.已知函数y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-x2+ax.(1)若a=-2,求函数f(x)的解析式;(2)若函数f(x)为R上的单调减函数,①求a的取值范围;②若对任意实数m,f(m-1)+f(m2+t)<0恒成立,求实数t的取值范围. 21.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[3a,a+1]上不单调,求实数a的取值范围;(3)在区间[-1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围. 22.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,有>0成立.(1)判断f(x)在[-1,1]上的单调性;(2)解不等式f(x+)<f();(3)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围.
相关试卷
这是一份专题37 正、余弦函数的周期性、奇偶性、单调性和最值-2021-2022学年高一数学培优对点题组专题突破(人教A版2019必修第一册),文件包含专题37正余弦函数的周期性奇偶性单调性和最值解析版docx、专题37正余弦函数的周期性奇偶性单调性和最值原卷版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
这是一份专题17 函数奇偶性的应用-2021-2022学年高一数学培优对点题组专题突破(人教A版2019必修第一册),文件包含专题17函数奇偶性的应用-培优对点题组专题突破解析版doc、专题17函数奇偶性的应用-培优对点题组专题突破原卷版doc等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
这是一份专题16 函数的奇偶性-2021-2022学年高一数学培优对点题组专题突破(人教A版2019必修第一册),文件包含专题16函数的奇偶性-培优对点题组专题突破解析版doc、专题16函数的奇偶性-培优对点题组专题突破原卷版doc等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。